1,762 research outputs found

    Three Phases in the 3D Abelian Higgs Model with Nonlocal Gauge Interactions

    Full text link
    We study the phase structure of the 3D nonlocal compact U(1) lattice gauge theory coupled with a Higgs field by means of Monte-Carlo simulations. The nonlocal interactions among gauge variables are along the temporal direction and mimic the effect of local coupling to massless particles. We found that in contrast to the 3D local abelian Higgs model which has only one phase, the present model exhibits the confinement, Higgs, and Coulomb phases separated by three second-order transition lines emanating from a triple point. This result is quite important for studies on electron fractionalization phenomena in strongly-correlated electron systems. Implications to them are discussed

    A light Higgs scenario based on the TeV-scale supersymmetric strong dynamics

    Full text link
    We consider a model based on the supersymmetric QCD theory with N_c=2 and N_f=3. The theory is strongly coupled at the infrared scale \Lambda_H. Its low energy effective theory below \Lambda_H is described by the supersymmetric standard model with the Higgs sector that contains four iso-spin doublets, two neutral iso-spin singlets and two charged iso-spin singlets. If \Lambda_H is at the multi-TeV to 10 TeV, coupling constants for the F-terms of these composite fields are relatively large at the electroweak scale. Nevertheless, the SM-like Higgs boson is predicted to be as light as 125 GeV because these F-terms contribute to the mass of the SM-like Higgs boson not at the tree level but at the one-loop level. A large non-decoupling effect due to these F-terms appears in the one-loop correction to the triple Higgs boson coupling, which amounts to a few tens percent. Such a non-decoupling property in the Higgs potential realizes the strong first order phase transition, which is required for a successful scenario of electroweak baryogenesis

    New Critical Point Induced by the Axial Anomaly in Dense QCD

    Get PDF
    We study the interplay between chiral and diquark condensates within the framework of the Ginzburg-Landau free energy, and classify possible phase structures of two and three-flavor massless QCD. The QCD axial anomaly acts as an external field applied to the chiral condensate in a color superconductor and leads to a crossover between the broken chiral symmetry and the color superconducting phase, and, in particular, to a new critical point in the QCD phase diagram.Comment: 4 pages, 4 figures included, version to appear in Phys. Rev. Let

    Storage behavior of tomato inside a zero energy cool chamber

    Get PDF
    Tomato fruits were harvested at the middle-ripe stage and stored inside the “Zero energy cool chamber (ZECC)” which has a shelf-life of only about 7 days at ambient temperature (25°C). Storing tomato inside the ZECC could be a practical technique at farmer’s field to extend storage life by reducing the quality degradation. Physiological loss in weight (PLW) was faster for fruits held at ambient temperature. Weight loss during the storage at ambient temperature was 5.4%, but untreated fruits at ZECC over the same period showed at 2.6% loss. Although soluble solids increased over the storage period, there were no significant differences between ZECC and ambient temperature. However effect of hot water treatment on quality of tomatoes was clearly visible by increasing storage life up to 29 days. It reduced weight loss and decay, inhibited color development and maintained firmness of tomatoes but had no effect on total soluble solids content and pH level. Hot water treatment slightly reduced the mold growth of tomatoes stored inside ZECC

    Effect of Small-molecule Sensitizer on the Performance of Polymer Solar Cell

    Get PDF
    For improving optical absorption of organic solar cells, a small-molecule sensitizer, as a third material, is usually incorporated into binary solar cell system. In many cases, light harvesting can be improved but on the expense of charge carrier mobility of the solar cells. This obstacle can be addressed through the understanding solar cell physics. In the present work, we try to deeply understand the physics of the long-chain polymer solar cell composed of poly(3-hexylthiophene) (P3HT), as a donor polymer, and [6,6]-phenyl-C61 butyric acid methyl ester (PCBM), as an acceptor molecule. This understanding can be acquired through the effect of coumarin 6 dye (C6), as a small-molecule sensitizer, on optical absorption and photocurrent of the most common solar cell. From optical spectroscopy we found that, the C6 dye, as a small molecule, did not vary conjugation length of the long-chain polymer in the P3HT: PCBM: C6 solar cell. This was indicated from (1) unchanged vibronic structure of the P3HT after adding C6 dye and from (2) matching in the wavelength between absorption peaks of both pristine C6 and P3HT after adding C6 dye into blend. From photocurrent spectroscopy we found that, the incorporation of C6 dye, as a sensitizer, into P3HT: PCBM binary contributed to photocurrent and formed an additional charge carrier generation site through the C6: PCBM combination, which was individually found among with P3HT: PCBM combination in the same solar cell. In the same time, the C6 dye, as a shortchain molecule, restricted the transport of charge carriers generated by P3HT as a result of low hole mobility of the C6 short-chain molecules. Through the present study, the incorporation of a small-molecule sensitizer into polymer solar cell may acquire better understanding for the performance of the most common P3HT: PCBM solar cell.Keywords: Polymer Solar Cells; Device Physics; P3HT: PCBM Solar Cell

    Phase effects from the general neutrino Yukawa matrix on lepton flavor violation

    Full text link
    We examine contributions from Majorana phases to lepton flavor violating processes in the framework of the minimal supersymmetric standard model with heavy right-handed neutrinos. All phases in the complex neutrino Yukawa matrix are taken into account in our study. We find that in the scenario with universal soft-breaking terms sizable phase effects can appear on the lepton flavor violating processes such as μ→eγ\mu \to e \gamma, τ→eγ\tau \to e \gamma, and τ→μγ\tau \to \mu \gamma. In particular, the branching ratio of μ→eγ\mu \to e \gamma can be considerably enhanced due to the Majorana phases, so that it can be much greater than that of τ→μγ\tau \to \mu \gamma.Comment: 14 pages, 4 eps figures, revtex

    Analytic Bethe Ansatz for 1-D Hubbard model and twisted coupled XY model

    Full text link
    We found the eigenvalues of the transfer matrices for the 1-D Hubbard model and for the coupled XY model with twisted boundary condition by using the analytic Bethe Ansatz method. Under a particular condition the two models have the same Bethe Ansatz equations. We have also proved that the periodic 1-D Hubbard model is exactly equal to the coupled XY model with nontrivial twisted boundary condition at the level of hamiltonians and transfer matrices.Comment: 22 pages, latex, no figure

    Influence of Oxygen at Atmospheric and High Pressure on the Developing Tooth Germ in Rat Embryos

    Full text link
    Repeated exposure of pregnant rats to oxygen at high pressure (65 psi) twice a day for seven days increased the height of the tooth germ and ameloblastic layer of the embryo, but the width and odontoblastic layer were not changed. Exposure of pregnant rats to oxygen at atmospheric pressure stimulated the body growth of the embryo in utero.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68256/2/10.1177_00220345720510052501.pd

    A gapless charge mode induced by the boundary states in the half-filled Hubbard open-chain

    Full text link
    We discuss the ground state and some excited states of the half-filled Hubbard model defined on an open chain with L sites, where only one of the boundary sites has a different value of chemical potential. We consider the case when the boundary site has a negative chemical potential -p and the Hubbard coupling U is positive. By an analytic method we show that when p is larger than the transfer integral some of the ground-state solutions of the Bethe ansatz equations become complex-valued. It follows that there is a ``surface phase transition'' at some critical value p_c; when p<p_c all the charge excitations have the gap for the half-filled band, while there exists a massless charge mode when p>p_c.Comment: Revtex, 25 pages, 3 eps figures; Full revision with Appendixes adde
    • …
    corecore