19 research outputs found

    Eicosapentaenoic acid increases cytochrome P-450 2J2 gene expression and epoxyeicosatrienoic acid production via peroxisome proliferator-activated receptor γ in endothelial cells

    Get PDF
    Summaryω-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have beneficial effects on cardiovascular diseases. Cytochrome P-450 (CYP) 2J2 that is expressed in endothelial cells metabolizes arachidonic acids to biologically active epoxyeicosatrienoic acids (EETs) that possess anti-inflammatory and anti-thrombotic effects.We studied the effects of EPA and DHA on the expression of CYP 2J2 mRNA by reverse transcription-polymerase chain reaction in cultured human umbilical vein endothelial cells and found that EPA, but not DHA, increased the expression of CYP 2J2 mRNA in a dose-dependent and a time-dependent manner. EPA-induced CYP 2J2 expression was significantly inhibited by pretreatment with a peroxisome proliferator-activated receptor (PPAR) γ antagonist, GW9662. EPA, but not DHA, caused a significant increase in cellular levels of 11,12-dihydroxyeicosatrienoic acid that is a stable metabolite of 11,12-EET, which was blocked by pretreatment with GW9662.These data demonstrate that EPA increases CYP 2J2 mRNA expression and 11,12-EET production via PPARγ in endothelial cells and indicate a novel protective role of EPA and PPARγ against vascular inflammation

    Pentraxin-3 regulates the inflammatory activity of macrophages

    Get PDF
    Background and aims: Pentraxin-3 (PTX3) reportedly has protective roles in atherosclerosis and myocardial infarction, and is a useful biomarker of vascular inflammation. However, the detailed functions of PTX3 in inflammation are yet to be elucidated. This study aimed to investigate the function of PTX3 in macrophages. Methods: PMA-treated THP-1 cell line (THP-1 macrophage) and monocyte-derived human primary macrophages were treated with recombinant PTX3. Cytokine and chemokine levels in the THP-1 culture medium were measured as well as monocyte chemoattractant protein (MCP-1) concentrations in the Raw 264.7 cell culture medium. PTX3-silenced apoptotic macrophages (THP-1 cell line) were generated to investigate the roles of PTX3 in phagocytosis. Results: In the presence of PTX3, macrophage interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α) and MCP-1 levels were reduced significantly (−39%, P=0.007; −21%, P=0.008; and −67%, P=0.0003, respectively), whilst activated transforming growth factor-β (TGF−β) was detected in the THP-1 macrophages (P=0.0004). Additionally, PTX3 induced Akt phosphorylation and reduced nuclear factor-kappa B (NF-κB) activation by 35% (P=0.002), which was induced by TNF-α in THP-1 macrophages. Furthermore, silencing of PTX3 in apoptotic cells resulted in increased macrophage binding, elevated expression rate of HLA-DR (+30%, P=0.015) and CD86 (+204%, P=0.004) positive cells, and induction of IL-1β (+36%, P=0.024) production. Conversely, adding recombinant PTX3 to macrophages reduced CD86 and HLA-DR expression in a dose-dependent manner. Conclusions: We identified PTX3 as a novel regulator of macrophage activity, and this function suggests that PTX3 acts to resolve inflammation

    Adenoviral Transfer of Rho Family Proteins to Lung Cancer Cells Ameliorates Cell Proliferation and Motility and Increases Apoptotic Change

    Get PDF
    Lung cancer is still a very severe disease which has a low survival rate due to localinvasion and metastasis potentials in spite of many clinical challenges using anti-cancerdrugs. Rho family small GTPases play pivotal roles in cell invasion and metastasisduring carcinogenesis. In this study, we explored the inhibitory effect of adenoviralvector encoding dominant negative mutants of Rac, RhoA, and ROCK in humannon-small cell lung carcinoma cell lines (A549 and SQ5) and mouse carcinoma cell line(Lewis lung carcinoma, LLC). These cells showed high expression of Rac, Rho, andROCK, whereas only faint bands were detected in normal human lung epithelial cells,BET-1A. The efficiency of adenoviral vector transfer was stronger in A549 and SQ5cells than LLC cells. Dominant negative forms of RhoA (Rho-DN) and Rac (Rac-DN)decreased cell proliferation in WST-8 assay and increased the number of apoptotic cellsin both A549 and SQ5 cells by Hoechst 33258 and TUNEL staining. On the otherhand, DN form of ROCK (ROCK-DN) did not show any apparent changes comparedwith the other proteins. Transwellâ—‹!R chamber analysis showed that migration/invasionactivity was significantly suppressed by gene transfection both in A549 and SQ5 cellsand that ROCK-DN gene transfer required a higher multiplicity of infection to showeffects similar to Rho and Rac. Although the effect of gene therapy is cell-dependent,these data suggest that adenoviral gene transfer with Rho family small GTPases is onegood approach to lung cancer therapy

    Role of AMPD2 in impaired glucose tolerance induced by high fructose diet

    No full text
    A high intake of products containing fructose is known to mediate insulin resistance. In the liver, AMPD2, an isoform of AMPD, has important glucose metabolic homeostasis functions including maintenance of AMP-activated protein kinase (AMPK). We speculated that AMPD2 induces impaired glucose tolerance in individuals who consume a high-fructose diet. We gave either a normal-chow (NCD) or high-fructose (HFrD) diet for 40 days to 8-week-old male wild-type (WT) and Ampd2−/− homozygote (A2−/−) C57BL/6 mice. A glucose tolerance test (GTT) and pyruvate tolerance test (PTT) were used to evaluate glucose metabolism. In addition, gluconeogenesis and glycolysis enzymes, and AMPK phosphorylation in the liver were investigated. With consumption of the HFrD, A2−/− mice showed enhanced glucose tolerance in GTT and PTT results as compared to the WT mice, which were independent of changes in body weight. Also, the levels of phosphoenolpyruvate carboxy kinase and glucose-6-phosphatase (hepatic gluconeogenic enzymes) were significantly reduced in A2−/− as compared to WT mice. The hepatic glycolytic enzymes glucokinase, phosphofructokinase, and pyruvate kinase were also examined, though there were no significant differences between genotypes in regard to both mRNA expression and protein expression under HFrD. Surprisingly, hepatic AMPK phosphorylation resulted in no changes in the A2−/− as compared to WT mice under these conditions. Our results indicated that Ampd2–deficient mice are protected from high fructose diet-induced glycemic dysregulation, mainly because of gluconeogenesis inhibition, and indicate a novel therapeutic target for type 2 diabetes mellitus
    corecore