5 research outputs found

    Novel technique to study the wet chemical etching response of multi-crystalline silicon wafers

    Get PDF
    The current work aimed to demonstrate the application of a technique where white light interferometry (WLI) and Laue X-ray crystallography scanner characterisation were combined to study the chemical etching response of diamond cut multi-crystalline Si (mc-Si) wafers. Using this technique, the effect of different texturing additives (isopropyl alcohol, natrium hypochlorite) was evaluated by examining the topography of the mc-Si surfaces before and after etching. The etching responses of monocrystalline Si wafers of (1 0 0), (1 1 0) and (1 1 1) orientations were used as reference for comparison with the multi-crystalline wafers investigated. The texturing results illustrated the influence of different crystal-orientations on the etching rate. It was revealed that for the mc-Si wafers, the etching speed of the different crystal grain-planes is increasing with their crystallographic similarity with the main (hkl) planes (100, 110,111). The comparison of isopropyl alcohol (IPA) and sodium hypochlorite (NaOCl) additives to KOH solutions showed that NaOCl additive is favourable for the polishing of mc-Si wafers, while IPA can be used as polishing only for crystal grains close to the (1 1 1) orientation.publishedVersio

    Capillary forces as a limiting factor for sawing of ultrathin silicon wafers by diamond multi-wire saw

    Get PDF
    Succeeding with ultrathin silicon wafer sawing by diamond multi-wire saw, is not only a matter of optimization; the challenges of thin wafer production and the capability limit have not yet been fully understood. In this work, we have seen that regular pairing of wires occurs when the wire-wire separation distance is reduced below some critical value. The wire pairing leads to wire jumps on the wire guide rolls, and if the run is not stopped, it leads to wire breakage. Moreover, it effectively obstructs the production of wafers thinner than the critical wire-wire distance. We suggest that the physical explanation to the observed limitations to ultrathin wafer sawing, by diamond multi-wire saw, is related to the capillary force acting on the wires due to the sawing liquid bridge connecting the wires. The hypothesis is supported by simplified mathematical modelling including capillary and spring forces between infinitely long, parallel wires. The calculations suggest that capillary forces are the main reason for wire pairing, and that wire pairing will occur when the wire distance is below some critical distance. This matches the observed, experimental behavior. The critical distance will vary with wafer saw design and operation. To succeed with cutting very thin wafers, we recommend using lower surface tension sawing fluid or even dry in-cut, to reduce the capillary forces and thus decrease the critical wire separation distance, and to reduce wire oscillations to decrease the probability of sub-critical wire-wire separation distance. To reduce the vibration amplitude, shorter distance between the wire guide rolls, thinner wires, and increased wire tension are suggested.publishedVersio

    Modeling and Experimental Study of a Stirred Tank Reactor

    No full text

    Capillary forces as a limiting factor for sawing of ultrathin silicon wafers by diamond multi-wire saw

    No full text
    Succeeding with ultrathin silicon wafer sawing by diamond multi-wire saw, is not only a matter of optimization; the challenges of thin wafer production and the capability limit have not yet been fully understood. In this work, we have seen that regular pairing of wires occurs when the wire-wire separation distance is reduced below some critical value. The wire pairing leads to wire jumps on the wire guide rolls, and if the run is not stopped, it leads to wire breakage. Moreover, it effectively obstructs the production of wafers thinner than the critical wire-wire distance. We suggest that the physical explanation to the observed limitations to ultrathin wafer sawing, by diamond multi-wire saw, is related to the capillary force acting on the wires due to the sawing liquid bridge connecting the wires. The hypothesis is supported by simplified mathematical modelling including capillary and spring forces between infinitely long, parallel wires. The calculations suggest that capillary forces are the main reason for wire pairing, and that wire pairing will occur when the wire distance is below some critical distance. This matches the observed, experimental behavior. The critical distance will vary with wafer saw design and operation. To succeed with cutting very thin wafers, we recommend using lower surface tension sawing fluid or even dry in-cut, to reduce the capillary forces and thus decrease the critical wire separation distance, and to reduce wire oscillations to decrease the probability of sub-critical wire-wire separation distance. To reduce the vibration amplitude, shorter distance between the wire guide rolls, thinner wires, and increased wire tension are suggested

    Capillary forces as a limiting factor for sawing of ultrathin silicon wafers by diamond multi-wire saw

    Get PDF
    Succeeding with ultrathin silicon wafer sawing by diamond multi-wire saw, is not only a matter of optimization; the challenges of thin wafer production and the capability limit have not yet been fully understood. In this work, we have seen that regular pairing of wires occurs when the wire-wire separation distance is reduced below some critical value. The wire pairing leads to wire jumps on the wire guide rolls, and if the run is not stopped, it leads to wire breakage. Moreover, it effectively obstructs the production of wafers thinner than the critical wire-wire distance. We suggest that the physical explanation to the observed limitations to ultrathin wafer sawing, by diamond multi-wire saw, is related to the capillary force acting on the wires due to the sawing liquid bridge connecting the wires. The hypothesis is supported by simplified mathematical modelling including capillary and spring forces between infinitely long, parallel wires. The calculations suggest that capillary forces are the main reason for wire pairing, and that wire pairing will occur when the wire distance is below some critical distance. This matches the observed, experimental behavior. The critical distance will vary with wafer saw design and operation. To succeed with cutting very thin wafers, we recommend using lower surface tension sawing fluid or even dry in-cut, to reduce the capillary forces and thus decrease the critical wire separation distance, and to reduce wire oscillations to decrease the probability of sub-critical wire-wire separation distance. To reduce the vibration amplitude, shorter distance between the wire guide rolls, thinner wires, and increased wire tension are suggested
    corecore