141 research outputs found
A hard metallic material: Osmium Diboride
We calculate the structural and electronic properties of OsB2 using density
functional theory with or without taking into account spin-orbit (SO)
interaction. Our results show that the bulk modulus with and without SO
interaction are 364 and 365 Gpa respectively, both are in good agreement with
experiment (365-395 Gpa). The evidence of covalent bonding of Os-B, which plays
an important role to form a hard material, is indicated both in charge density,
atoms in molecules analysis, and density of states analysis. The good
metallicity and hardness of OsB2 might suggest its potential application as
hard conductors.Comment: Figures improve
A critical assessment of the Self-Interaction Corrected Local Density Functional method and its algorithmic implementation
We calculate the electronic structure of several atoms and small molecules by
direct minimization of the Self-Interaction Corrected Local Density
Approximation (SIC-LDA) functional. To do this we first derive an expression
for the gradient of this functional under the constraint that the orbitals be
orthogonal and show that previously given expressions do not correctly
incorporate this constraint. In our atomic calculations the SIC-LDA yields
total energies, ionization energies and charge densities that are superior to
results obtained with the Local Density Approximation (LDA). However, for
molecules SIC-LDA gives bond lengths and reaction energies that are inferior to
those obtained from LDA. The nonlocal BLYP functional, which we include as a
representative GGA functional, outperforms both LDA and SIC-LDA for all ground
state properties we considered.Comment: 14 pages, 5 figure
Theory of structural response to macroscopic electric fields in ferroelectric systems
We have developed and implemented a formalism for computing the structural
response of a periodic insulating system to a homogeneous static electric field
within density-functional perturbation theory (DFPT). We consider the
thermodynamic potentials E(R,eta,e) and F(R,eta,e) whose minimization with
respect to the internal structural parameters R and unit cell strain eta yields
the equilibrium structure at fixed electric field e and polarization P,
respectively. First-order expansion of E(R,eta,e) in e leads to a useful
approximation in which R(P) and eta(P) can be obtained by simply minimizing the
zero-field internal energy with respect to structural coordinates subject to
the constraint of a fixed spontaneous polarization P. To facilitate this
minimization, we formulate a modified DFPT scheme such that the computed
derivatives of the polarization are consistent with the discretized form of the
Berry-phase expression. We then describe the application of this approach to
several problems associated with bulk and short-period superlattice structures
of ferroelectric materials such as BaTiO3 and PbTiO3. These include the effects
of compositionally broken inversion symmetry, the equilibrium structure for
high values of polarization, field-induced structural phase transitions, and
the lattice contributions to the linear and the non-linear dielectric
constants.Comment: 19 pages, with 15 postscript figures embedded. Uses REVTEX4 and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/sai_pol/index.htm
The Tensor-Vector-Scalar theory and its cosmology
Over the last few decades, astronomers and cosmologists have accumulated vast
amounts of data clearly demonstrating that our current theories of fundamental
particles and of gravity are inadequate to explain the observed discrepancy
between the dynamics and the distribution of the visible matter in the
Universe. The Modified Newtonian Dynamics (MOND) proposal aims at solving the
problem by postulating that Newton's second law of motion is modified for
accelerations smaller than ~10^{-10}m/s^2. This simple amendment, has had
tremendous success in explaining galactic rotation curves. However, being
non-relativistic, it cannot make firm predictions for cosmology.
A relativistic theory called Tensor-Vector-Scalar (TeVeS) has been proposed
by Bekenstein building on earlier work of Sanders which has a MOND limit for
non-relativistic systems.
In this article I give a short introduction to TeVeS theory and focus on its
predictions for cosmology as well as some non-cosmological studies.Comment: 44 pages, topical review for Classical and Quantum Gravit
A Late Form of Nucleophagy in Saccharomyces cerevisiae
Autophagy encompasses several processes by which cytosol and organelles can be delivered to the vacuole/lysosome for breakdown and recycling. We sought to investigate autophagy of the nucleus (nucleophagy) in the yeast Saccharomyces cerevisiae by employing genetically encoded fluorescent reporters. The use of such a nuclear reporter, n-Rosella, proved the basis of robust assays based on either following its accumulation (by confocal microscopy), or degradation (by immunoblotting), within the vacuole. We observed the delivery of n-Rosella to the vacuole only after prolonged periods of nitrogen starvation. Dual labeling of cells with Nvj1p-EYFP, a nuclear membrane reporter of piecemeal micronucleophagy of the nucleus (PMN), and the nucleoplasm-targeted NAB35-DsRed.T3 allowed us to detect PMN soon after the commencement of nitrogen starvation whilst delivery to the vacuole of the nucleoplasm reporter was observed only after prolonged periods of nitrogen starvation. This later delivery of nuclear components to the vacuole has been designated LN (late nucleophagy). Only a very few cells showed simultaneous accumulation of both reporters (Nvj1p-EYFP and NAB35-DsRed.T3) in the vacuole. We determined, therefore, that delivery of the two respective nuclear reporters to the vacuole is temporally and spatially separated. Furthermore, our data suggest that LN is mechanistically distinct from PMN because it can occur in nvj1Δ and vac8Δ cells, and does not require ATG11. Nevertheless, a subset of the components of the core macroautophagic machinery is required for LN as it is efficiently inhibited in null mutants of several autophagy-related genes (ATG) specifying such components. Moreover, the inhibition of LN in some mutants is accompanied by alterations in nuclear morphology
- …