9,032 research outputs found

    Quark Masses and Renormalization Constants from Quark Propagator and 3-point Functions

    Get PDF
    We have computed the light and strange quark masses and the renormalization constants of the quark bilinear operators, by studying the large-p^2 behaviour of the lattice quark propagator and 3-point functions. The calculation is non-perturbatively improved, at O(a), in the chiral limit. The method used to compute the quark masses has never been applied so far, and it does not require an explicit determination of the quark mass renormalization constant.Comment: LATTICE99 (Improvement and Renormalization) - 3 pages, 2 figure

    Gemini optical observations of binary millisecond-pulsars

    Get PDF
    Milli-second pulsars (MSPs) are rapidly spinning neutron stars, with spin periods P_s <= 10 ms, which have been most likely spun up after a phase of matter accretion from a companion star. In this work we present the results of the search for the companion stars of four binary milli-second pulsars, carried out with archival data from the Gemini South telescope. Based upon a very good positional coincidence with the pulsar radio coordinates, we likely identified the companion stars to three MSPs, namely PSRJ0614-3329 (g=21.95 +- 0.05), J1231-1411 (g=25.40 +-0.23), and J2017+0603 (g=24.72 +- 0.28). For the last pulsar (PSRJ0613-0200) the identification was hampered by the presence of a bright star (g=16 +- 0.03) at \sim 2" from the pulsar radio coordinates and we could only set 3-sigma upper limits of g=25.0, r= 24.3, and i= 24.2 on the magnitudes of its companion star. The candidate companion stars to PSRJ0614-3329, J1231-1411, and J2017+0603 can be tentatively identified as He white dwarfs (WDs) on the basis of their optical colours and brightness and the comparison with stellar model tracks. From the comparison of our multi-band photometry with stellar model tracks we also obtained possible ranges on the mass, temperature, and gravity of the candidate WD companions to these three MSPs. Optical spectroscopy observations are needed to confirm their possible classification as He WDs and accurately measure their stellar parameters.Comment: 17 pages, 7 figures, 6 tables, accepted for publication in MNRA

    Globular Clusters in the Magellanic Clouds.I:BV CCD-Photometry for 11 Clusters

    Get PDF
    We present BV CCD-data for 11 intermediate-age LMC clusters; the main conclusions are: 1. in the (V_to, V_cl,m) and (V-to, (V_to-V_cl,m)) planes the models yield a good overall description of the data; 2. with the current sample, it is impossible to firmly choose between "classical" and "overshooting" models; 3. the separation in colour between the MS band and the Red He-burning Clump is smaller than predicted by theoretical tracks; 4. the existence of the so-called "RGB phase-transition (Renzini and Buzzoni 1986) seems to be confirmed.Comment: 62 pages, 37 figures and tables 6 to 16 available on request, uuencoded compressed postscript file with tables 1-5 and 17-18 included, BAP 08-1994-020-OA

    Observations of one young and three middle-aged γ\gamma-ray pulsars with the Gran Telescopio Canarias

    Full text link
    We used the 10.4m Gran Telescopio Canarias to search for the optical counterparts to four isolated γ\gamma-ray pulsars, all detected in the X-rays by either \xmm\ or \chan\ but not yet in the optical. Three of them are middle-aged pulsars -- PSR\, J1846+0919 (0.36 Myr), PSR\, J2055+2539 (1.2 Myr), PSR\, J2043+2740 (1.2 Myr) -- and one, PSR\, J1907+0602, is a young pulsar (19.5 kyr). For both PSR\, J1907+0602 and PSR\, J2055+2539 we found one object close to the pulsar position. However, in both cases such an object cannot be a viable candidate counterpart to the pulsar. For PSR\, J1907+0602, because it would imply an anomalously red spectrum for the pulsar and for PSR\, J2055+2539 because the pulsar would be unrealistically bright (r=20.34±0.04r'=20.34\pm0.04) for the assumed distance and interstellar extinction. For PSR\, J1846+0919, we found no object sufficiently close to the expected position to claim a possible association, whereas for PSR\, J2043+2740 we confirm our previous findings that the object nearest to the pulsar position is an unrelated field star. We used our brightness limits (g27g' \approx 27), the first obtained with a large-aperture telescope for both PSR\, J1846+0919 and PSR\, J2055+2539, to constrain the optical emission properties of these pulsars and investigate the presence of spectral turnovers at low energies in their multi-wavelength spectra.Comment: 10 pages, 11 figures, accpted for publication in MNRA

    VLT observations of the magnetar CXO J164710.2-455216 and the detection of a candidate infrared counterpart

    Get PDF
    We present deep observations of the field of the magnetar CXOJ164710.2-455216 in the star cluster Westerlund 1, obtained in the near-infrared with the adaptive optics camera NACO@VLT. We detected a possible candidate counterpart at the {\em Chandra} position of the magnetar, of magnitudes J=23.5±0.2\mathrm{J} = 23.5 \pm 0.2, H=21.0±0.1\mathrm{H} = 21.0 \pm 0.1, and KS=20.4±0.1\mathrm{K}_\mathrm{S} = 20.4 \pm 0.1. The KS_{\rm S}-band measurements available for two epochs (2006 and 2013) do not show significant signs of variability but only a marginal indication that the flux varied (at the 2 σ\sigma level), consistent with the fact that the observations were taken when CXOJ164710.2-455216 was in quiescence. At the same time, we also present colour--magnitude and colour--colour diagrams in the J, H, and KS_{\rm S} bands from the 2006 epoch only, the only one with observations in all three bands, showing that the candidate counterpart lies in the main bulk of objects describing a relatively well--defined sequence. Therefore, based on its colours and lack of variability, we cannot yet associate the candidate counterpart to CXOJ164710.2-455216. Future near-infrared observations of the field, following-up a source outburst, would be crucial to confirm the association from the detection of near-infrared variability and colour evolution.Comment: 5 pages, 3 figures, accepted for publication in MNRA

    Large Binocular Telescope observations of PSR J2043+2740

    Get PDF
    We present the results of deep optical imaging of the radio/γ\gamma-ray pulsar PSR J2043+2740, obtained with the Large Binocular Telescope (LBT). With a characteristic age of 1.2 Myr, PSR J2043+2740 is one of the oldest (non recycled) pulsars detected in γ\gamma-rays, although with still a quite high rotational energy reservoir (E˙rot=5.6×1034\dot{E}_{\rm rot} = 5.6 \times 10^{34} erg s1^{-1}). The presumably close distance (a few hundred pc), suggested by the hydrogen column density (NH3.6×1020N_{\rm H} \lesssim 3.6 \times 10^{20} cm2^{-2}), would make it a viable target for deep optical observations, never attempted until now. We observed the pulsar with the Large Binocular Camera of the LBT. The only object (V=25.44±\pm0.05) detected within ~3" from the pulsar radio coordinates is unrelated to it. PSR J2043+2740 is, thus, undetected down to V~26.6 (3-σ\sigma), the deepest limit on its optical emission. We discuss the implications of this result on the pulsar emission properties.Comment: 4 pages, 3 figures, accepted for publication on MNRA

    Evidence of vacuum birefringence from the polarisation of the optical emission from an Isolated Neutron Star

    Full text link
    Isolated Neutron Stars are some of the most exciting stellar objects known to astronomers: they have the most extreme magnetic fields, with values up to 101510^{15} G, and, with the exception of stellar-mass black holes, they are the most dense stars, with densities of 1014\approx 10^{14} g cm3^{-3}. As such, they are perfect laboratories to test theories of electromagnetism and nuclear physics under conditions of magnetic field and density unattainable on Earth. In particular, the interaction of radiation with strong magnetic fields is the cause of the {\em vacuum birefringence}, an effect predicted by quantum electrodynamics in 1936 but that lacked an observational evidence until now. Here, we show how the study of the polarisation of the optical radiation from the surface of an isolated neutron star yielded such an observational evidence, opening exciting perspectives for similar studies at other wavelengths.Comment: 5 pages, 1 figure, Contributed to the 13th Patras Workshop on Axions, WIMPs and WISPs, Thessaloniki, May 15 to 19, 201

    XMM-Newton observation of a sample of four close dSph galaxies

    Get PDF
    We present the results of the analysis of deep archival \sat\ observations towards the dwarf spheroidal galaxies Draco, Leo I, Ursa Major II and Ursa Minor in the Milky Way neighbourhood. The X-ray source population is characterized and cross-correlated with available databases with the aim to infer their nature. We also investigate if intermediate-mass black holes are hosted in the center of these galaxies. In the case of Draco, we detect 96 high-energy sources, two of them being possibly local stars, while no evidence for any X-ray emitting central compact object is found. Towards the Leo I and UMa II field of view we reveal 116 and 49 X-ray sources, respectively. None of them correlates with the putative central black holes and only one is likely associated with a UMa II local source. The study of the UMi dwarf galaxy shows 54 high-energy sources and a possible association {with a source at the dSph center}. We put an upper limit to the central compact object luminosity of 4.02×\times1033^{33} erg/s. Furthermore, via the correlation with a radio source near the galactic center, we get that the putative black hole should have a mass of (2.762.54+32.00)×106M\left(2.76^{+32.00}_{-2.54}\right)\times10^6 M_{\odot} and be radiatively inefficient. This confirms a previous result obtained by using Chandra data alone.Comment: MNRAS, in press, tables available on lin
    corecore