217 research outputs found

    Local atomic structure and discommensurations in the charge density wave of CeTe3

    Full text link
    The local structure of CeTe3 in the incommensurate charge density wave (IC-CDW) state has been obtained using atomic pair distribution function (PDF) analysis of x-ray diffraction data. Local atomic distortions in the Te-nets due to the CDW are larger than observed crystallographically, resulting in distinct short and long Te-Te bonds. Observation of different distortion amplitudes in the local and average structures are explained by the discommensurated nature of the CDW since the PDF is sensitive to the local displacements within the commensurate regions whereas the crystallographic result averages over many discommensurated domains. The result is supported by STM data. This is the first quantitative local structural study within the commensurate domains in an IC-CDW system.Comment: 4 pages, 4 figure

    Scanning-probe spectroscopy of semiconductor donor molecules

    Full text link
    Semiconductor devices continue to press into the nanoscale regime, and new applications have emerged for which the quantum properties of dopant atoms act as the functional part of the device, underscoring the necessity to probe the quantum structure of small numbers of dopant atoms in semiconductors[1-3]. Although dopant properties are well-understood with respect to bulk semiconductors, new questions arise in nanosystems. For example, the quantum energy levels of dopants will be affected by the proximity of nanometer-scale electrodes. Moreover, because shallow donors and acceptors are analogous to hydrogen atoms, experiments on small numbers of dopants have the potential to be a testing ground for fundamental questions of atomic and molecular physics, such as the maximum negative ionization of a molecule with a given number of positive ions[4,5]. Electron tunneling spectroscopy through isolated dopants has been observed in transport studies[6,7]. In addition, Geim and coworkers identified resonances due to two closely spaced donors, effectively forming donor molecules[8]. Here we present capacitance spectroscopy measurements of silicon donors in a gallium-arsenide heterostructure using a scanning probe technique[9,10]. In contrast to the work of Geim et al., our data show discernible peaks attributed to successive electrons entering the molecules. Hence this work represents the first addition spectrum measurement of dopant molecules. More generally, to the best of our knowledge, this study is the first example of single-electron capacitance spectroscopy performed directly with a scanning probe tip[9].Comment: In press, Nature Physics. Original manuscript posted here; 16 pages, 3 figures, 5 supplementary figure

    Direct observation of micron-scale ordered structure in a two-dimensional electron system

    Full text link
    We have applied a novel scanned probe method to directly resolve the interior structure of a GaAs/AlGaAs two-dimensional electron system in a tunneling geometry. We find that the application of a perpendicular magnetic field can induce surprising density modulations that are not static as a function of the field. Near six and four filled Landau levels, stripe-like structures emerge with a characteristic wave length ~2 microns. Present theories do not account for ordered density modulations on this length scale.Comment: 5 pages, 4 figures. To appear in Phys. Rev.

    Modifying the surface electronic properties of YBa2Cu3O7-delta with cryogenic scanning probe microscopy

    Full text link
    We report the results of a cryogenic study of the modification of YBa2Cu3O7-delta surface electronic properties with the probe of a scanning tunneling microscope (STM). A negative voltage applied to the sample during STM tunneling is found to modify locally the conductance of the native degraded surface layer. When the degraded layer is removed by etching, the effect disappears. An additional surface effect is identified using Scanning Kelvin Probe Microscopy in combination with STM. We observe reversible surface charging for both etched and unetched samples, indicating the presence of a defect layer even on a surface never exposed to air.Comment: 6 pages, 4 figures. To appear in Superconductor Science and Technolog

    Chaos in Andreev Billiards

    Full text link
    A new type of classical billiard - the Andreev billiard - is investigated using the tangent map technique. Andreev billiards consist of a normal region surrounded by a superconducting region. In contrast with previously studied billiards, Andreev billiards are integrable in zero magnetic field, {\it regardless of their shape}. A magnetic field renders chaotic motion in a generically shaped billiard, which is demonstrated for the Bunimovich stadium by examination of both Poincar\'e sections and Lyapunov exponents. The issue of the feasibility of certain experimental realizations is addressed.Comment: ReVTeX3.0, 4 pages, 3 figures appended as postscript file (uuencoded with uufiles

    Modeling Subsurface Charge Accumulation Images of a Quantum Hall Liquid

    Full text link
    Subsurface Charge Accumulation imaging is a cryogenic scanning probe technique that has recently been used to spatially probe incompressible strips formed in a two-dimensional electron system (2DES) at high magnetic fields. In this paper, we present detailed numerical modeling of these data. At a basic level, the method produces results that agree well with the predictions of models based on simple circuit elements. Moreover, the modeling method is sufficiently advanced to simulate the spatially resolved measurements. By comparing directly the simulations to the experimentally measured data, we can extract quantitatively local electronic features of the 2DES. In particular, we deduce the electron density of states inside the incompressible strips and electrical resistance across them.Comment: 11 pages, 3 figure

    An Automated Coronary Artery Occlusion Device for Stimulating Collateral Development in Vivo

    Get PDF
    Introduction: Repetitive, brief coronary artery occlusions produce collateral development in experimental animals. This model causes coronary collateralization in a highly reproducible fashion, but the process is very labor intensive. We report the design and use of a fully automated hydraulic coronary occlusion device capable of producing repetitive coronary occlusions and enhancement of coronary collateral development in dogs. Methods: The device consists of analog electronics that allow adjustment of occlusion number, frequency, pressure and duration, and mechanical components responsible for the coronary occlusion. The motor and piston of the device are coupled to a chronically implanted hydraulic vascular occluder placed around the left anterior descending coronary artery (LAD) of dogs instrumented for measurement of systemic and coronary hemodynamics. One group of dogs (n=6) underwent brief (2 min) LAD occlusions once per hour, eight times per day, 5 days/week for 3 weeks to stimulate collateral development (measured using radioactive microspheres). Another group of dogs (n=6) that did not receive repetitive occlusions served as controls. Results: The device reproducibly produced repetitive LAD occlusions for the duration, frequency, and time interval initially programmed. A time-dependent increase in transmural collateral blood flow was observed in dogs undergoing repetitive occlusions using the device. Collateral blood flow was unchanged in dogs that did not undergo occlusions. Discussion: The automated occluder device reliably produces repetitive coronary occlusions and may facilitate further study of coronary collateral development in response to chronic myocardial ischemia
    • …
    corecore