2 research outputs found

    Characterization of polygalacturonases produced by the endophytic fungus Penicillium brevicompactum in solid state fermentation - SSF

    Full text link
    Polygalacturonases belong to the family of pectinases, enzymes that are in high demand in industry because of their many different applications. This study therefore sought to examine the production of polygalacturonases using an endophytic fungus, Penicilium brevicompactum, isolated from Baccharis dracunculifolia D.C. (Asteraceae) through semi solid fermentation using orange peels and citric pectin 2% as base substrate, supplemented with different carbon sources. After the fermentation process, the enzyme was characterized. The results showed that the micro-organism was able to use a wide range of carbon sources, but with polygalacturonase activity varying with each source. The highest yield, however, was achieved after 30 hours of incubation in the presence of 4% of galactose and 2% of pectin. Studies on the characterization of the polygalacturonase revealed that the optimal temperature of this enzyme is 72°C and that it maintains 60 and 15% of its maximum activity when incubated for 2 hours at 40 and 90°C, respectively. The optimal pH for the activity of the enzyme was 4.6. The enzyme retained 65 and 30% of its maximum activity when incubated at pH 3.5 and 9.5, respectively, for 24 hours at ambient temperature. The enzyme activity was stimulated by Mg2+ ions. On the other hand, it was inhibited by the ions Cs+2, Hg+2, Li+2 and Sr+2. The ions Zn+2 and Cu+2 inhibited it by 94% and 69%, respectively

    Characterization of alpha-Amylase Produced by the Endophytic Strain of Penicillium digitatum in Solid State Fermentation (SSF) and Submerged Fermentation (SmF)

    Full text link
    Α-Amylases are enzymes responsible for breaking the α-1.4 bond in polysaccharides with three or more glucose units, occupying the second place in the most widely employed enzymes in industry in the world. The objective of this study was to compare the yields of α-amylase produced by the endophytic fungus, Penicillium digitatum, strain D1-FB, isolated from Baccharis dracunculifolia D.C. (Asteraceae), through the solid state fermentation (SSM) and submerged fermentation (SmF) processes, in addition to characterizing the produced enzyme. The two fermentations were conducted for 120 hours, taking samples every 24 hours to obtain the peaks of production. The enzymes were characterized according to their optimal pH and temperature for performance and stability regarding the incubation in the presence of ions, variations in pH and temperature. The maximum yield of the enzyme was observed with SSF, using rice bran as substrate after 72 hours of fermentation, with 1,625 U/mL. The α-amylase had an optimal pH at 6.5 and optimal temperature at 45°C. All the ions resulted in a decrease in the activity of α-amylase in the concentration of 5mM. The enzyme proved to be quite stable in a pH range of 6.0 to 7.5 and up to the temperature of 37°C, but it presented great drops in activity with temperatures above 45°C and in the presence of ions at the concentration of 5 mM
    corecore