227 research outputs found

    Primary intestinal aspergillosis resulting in acute intestinal volvulus after autologous stem cell transplantation in a patient with relapsed non-Hodgkin lymphoma : report on a rare infectious complication and a review of the literature

    No full text
    Objectives: Since primary intestinal aspergillosis is a severe infectious complication with a high morbidity and mortality in immunocompromised patients, we want to draw attention to this rare entity and the importance of early recognition. Methods: We report a case of documented primary intestinal aspergillosis in a patient receiving an autologous stem cell transplantation (SCT). Furthermore, this article gives a short reflection on the occurrence of invasive aspergillosis in autologous SCT and the value of serum galactomannan levels based on literature search and linked with the case. Results: In this case the patient presented on day +8 after autologous SCT for a relapsed diffuse large B-cell lymphoma with an acute abdomen with urgent need for surgical intervention. Biopsy revealed the presence of fungal colonies due to aspergillosis and voriconazole was started. Until that day the systematically taken serum galactomannan tests were all negative or pending. Initially there was some resistance to perform surgery in the presence of neutropenia and thrombocytopenia but in the end it provided the definitive diagnosis and should not be delayed. Until now this patient is in good health and retains a complete remission. Conclusion: With this case, we would like to emphasize that early recognition of primary intestinal aspergillosis is of the utmost importance as it is a rare but serious infectious complication. It should be included in the differential diagnosis of neutropenic patients with sudden onset abdominal pain and ongoing fever, even in the absence of a positive serum galactomannan

    Nanobody based dual specific CARs

    Get PDF
    Recent clinical trials have shown that adoptive chimeric antigen receptor (CAR) T cell therapy is a very potent and possibly curative option in the treatment of B cell leukemias and lymphomas. However, targeting a single antigen may not be sufficient, and relapse due to the emergence of antigen negative leukemic cells may occur. A potential strategy to counter the outgrowth of antigen escape variants is to broaden the specificity of the CAR by incorporation of multiple antigen recognition domains in tandem. As a proof of concept, we here describe a bispecific CAR in which the single chain variable fragment (scFv) is replaced by a tandem of two single-antibody domains or nanobodies (nanoCAR). High membrane nanoCAR expression levels are observed in retrovirally transduced T cells. NanoCARs specific for CD20 and HER2 induce T cell activation, cytokine production and tumor lysis upon incubation with transgenic Jurkat cells expressing either antigen or both antigens simultaneously. The use of nanobody technology allows for the production of compact CARs with dual specificity and predefined affinity

    Expression of the inhibitory Ly49E receptor is not critically involved in the immune response against cutaneous, pulmonary or liver tumours

    Get PDF
    Natural killer (NK) lymphocytes are part of the innate immune system and are important in immune protection against tumourigenesis. NK cells display a broad repertoire of activating and inhibitory cell surface receptors that regulate NK cell activity. The Ly49 family of NK receptors is composed of several members that recognize major histocompatibility complex class I (MHC-I) or MHC-I-related molecules. Ly49E is a unique inhibitory member, being triggered by the non-MHC-I-related protein urokinase plasminogen activator (uPA) in contrast to the known MHC-I-triggering of the other inhibitory Ly49 receptors. Ly49E also has an uncommon expression pattern on NK cells, including high expression on liver DX5-NK cells. Furthermore, Ly49E is the only Ly49 member expressed by epidermal gamma delta T cells. As gamma delta T cells and/or NK cells have been shown to be involved in the regulation of cutaneous, pulmonary and liver malignancies, and as uPA is involved in tumourigenesis, we investigated the role of the inhibitory Ly49E receptor in the anti-tumour immune response. We demonstrate that, although Ly49E is highly expressed on epidermal gamma delta T cells and liver NK cells, this receptor does not play a major role in the control of skin tumour formation or in lung and liver tumour development

    Ly49E Expression on CD8αα-expressing intestinal intraepithelial lymphocytes plays no detectable role in the development and progression of experimentally induced inflammatory bowel diseases

    Get PDF
    The Ly49E NK receptor is a unique inhibitory receptor, presenting with a high degree of conservation among mouse strains and expression on both NK cells and intraepithelial-localised T cells. Amongst intraepithelial-localised T cells, the Ly49E receptor is abundantly expressed on CD8 alpha alpha-expressing innate-like intestinal intraepithelial lymphocytes (iIELs), which contribute to front-line defense at the mucosal barrier. Inflammatory bowel diseases (IBDs), encompassing Crohn's disease and ulcerative colitis, have previously been suggested to have an autoreactive origin and to evolve from a dysbalance between regulatory and effector functions in the intestinal immune system. Here, we made use of Ly49E-deficient mice to characterize the role of Ly49E receptor expression on CD8 alpha alpha-expressing iIELs in the development and progression of IBD. For this purpose we used the dextran sodium sulphate (DSS)- and trinitrobenzenesulfonic-acid (TNBS)-induced colitis models, and the TNF Delta ARE ileitis model. We show that Ly49E is expressed on a high proportion of CD8 alpha alpha-positive iIELs, with higher expression in the colon as compared to the small intestine. However, Ly49E expression on small intestinal and colonic iIELs does not influence the development or progression of inflammatory bowel diseases

    Clinical implications of measurable residual disease in AML : review of current evidence

    Get PDF
    Despite the fact that 80% of adult acute myeloid leukaemia patients reach complete morphological remission after induction chemotherapy, many of them relapse. Many studies have shown that detection of minimal residual disease (defined as 'any detectable evidence of persistent leukaemic cells during complete morphological remission') has an added value in prediction of relapse and survival, and is more than just a surrogate marker for already known risk factors in AML. As such, the behaviour of the disease during treatment might become equally or even more important to decide whether or not an upgrade of treatment (such as an allogeneic stem cell transplantation) is necessary to improve outcome. However, there are still many open issues as to what the ideal time point is to measure MRD, which threshold is clinically significant, what sample (peripheral blood or bone marrow) should be used and how we can standardize tests so that results from different labs become comparable. This review gives an overview of currently available evidence regarding technical issues, prognostic impact and MRD-directed treatment in AML

    Managing viral hepatitis in cancer patients under immune checkpoint inhibitors : should we take the risk?

    Get PDF
    More patients with chronic hepatitis B and C infection are being exposed to immune checkpoint inhibitors (ICIs), but the safety and efficacy of ICIs in patients with chronic viral hepatitis are still poorly described. To explore this interaction, we identified eight studies of cancer patients with viral hepatitis treated with one or more ICIs, formally assessed tumor responses and safety by grading liver dysfunction. ICIs appear to be relatively safe in HBV/HCV-infected patients, and hepatitis related to viral reactivation is rare. In some patients, viral load regressed during ICI treatment, so immune checkpoints may play a role in viral clearance. HBV/HCV do not appear to be a contraindication to ICIs, although careful clinical and biochemical follow-up is recommended and, whenever necessary, antiviral therapy commenced

    In vitro human embryonic stem cell hematopoiesis mimics MYB-independent yolk sac hematopoiesis

    Get PDF
    Although hematopoietic precursor activity can be generated in vitro from human embryonic stem cells, there is no solid evidence for the appearance of multipotent, self-renewing and transplantable hematopoietic stem cells. This could be due to short half-life of hematopoietic stem cells in culture or, alternatively, human embryonic stem cellinitiated hematopoiesis may be hematopoietic stem cell-independent, similar to yolk sac hematopoiesis, generating multipotent progenitors with limited expansion capacity. Since a MYB was reported to be an excellent marker for hematopoietic stem cell-dependent hematopoiesis, we generated a MYB-eGFP reporter human embryonic stem cell line to study formation of hematopoietic progenitor cells in vitro. We found CD34(+) hemogenic endothelial cells rounding up and developing into CD43(+) hematopoietic cells without expression of MYB-eGFP. MYB-eGFP+ cells appeared relatively late in embryoid body cultures as CD34(+) CD43(+) CD45(-/lo) cells. These MYB-eGFP(+) cells were CD33 positive, proliferated in IL-3 containing media and hematopoietic differentiation was restricted to the granulocytic lineage. In agreement with data obtained on murine Myb(-/-) embryonic stem cells, bright eGFP expression was observed in a subpopulation of cells, during directed myeloid differentiation, which again belonged to the granulocytic lineage. In contrast, CD14(+) macrophage cells were consistently eGFP-and were derived from eGFPprecursors only. In summary, no evidence was obtained for in vitro generation of MYB+ hematopoietic stem cells during embryoid body cultures. The observed MYB expression appeared late in culture and was confined to the granulocytic lineage

    The tumor-associated antigen RHAMM (HMMR/CD168) is expressed by monocyte-derived dendritic cells and presented to T cells

    Get PDF
    We formerly demonstrated that vaccination with Wilms' tumor 1 (WT1)-loaded autologous monocyte-derived dendritic cells (mo-DCs) can be a well-tolerated effective treatment in acute myeloid leukemia (AML) patients. Here, we investigated whether we could introduce the receptor for hyaluronic acid-mediated motility (RHAMM/HMMR/CD168), another clinically relevant tumor-associated antigen, into these mo-DCs through mRNA electroporation and elicit RHAMM-specific immune responses. While RHAMM mRNA electroporation significantly increased RHAMM protein expression by mo-DCs, our data indicate that classical mo-DCs already express and present RHAMM at sufficient levels to activate RHAMM-specific T cells, regardless of electroporation. Moreover, we found that RHAMM-specific T cells are present at vaccination sites in AML patients. Our findings implicate that we and others who are using classical mo-DCs for cancer immunotherapy are already vaccinating against RHAMM

    T-cells with a single tumor antigen-specific T-cell receptor can be generated in vitro from clinically relevant stem cell sources

    Get PDF
    Chimeric antigen receptor (CAR) T-cells have shown great promise in the treatment of B-cell malignancies. For acute myeloid leukemia (AML), however, the optimal target surface antigen has yet to be discovered. Alternatively, T-cell receptor (TCR)-redirected T-cells target intracellular antigens, marking a broader territory of available target antigens. Currently, adoptive TCR T-cell therapy uses peripheral blood lymphocytes for the introduction of a transgenic TCR. However, this can cause graft-versus-host disease, due to mispairing of introduced and endogenous TCR chains. Therefore, we started from hematopoietic stem and progenitor cells (HSPC), that do not express a TCR yet, isolated from healthy donors, patients in remission after chemotherapy and AML patients at diagnosis. Using the OP9-DL1 in vitro co-culture system and agonist selection, TCR-transduced HSPC develop into mature tumor antigen-specific T-cells with only one TCR. We show here that this approach is feasible with adult HSPC from clinically relevant sources, albeit with slower maturation and lower cell yield compared to cord blood HSPC. Moreover, cryopreservation of HSPC does not have an effect on cell numbers or functionality of the generated T-cells. In conclusion, we show here that it is feasible to generate TA-specific T-cells from HSPC from adult healthy donors and patients and we believe these T-cells could be of use as a very valuable form of patient-tailored T-cell immunotherapy
    corecore