75 research outputs found

    Selecting Near-Optimal Learners via Incremental Data Allocation

    Full text link
    We study a novel machine learning (ML) problem setting of sequentially allocating small subsets of training data amongst a large set of classifiers. The goal is to select a classifier that will give near-optimal accuracy when trained on all data, while also minimizing the cost of misallocated samples. This is motivated by large modern datasets and ML toolkits with many combinations of learning algorithms and hyper-parameters. Inspired by the principle of "optimism under uncertainty," we propose an innovative strategy, Data Allocation using Upper Bounds (DAUB), which robustly achieves these objectives across a variety of real-world datasets. We further develop substantial theoretical support for DAUB in an idealized setting where the expected accuracy of a classifier trained on nn samples can be known exactly. Under these conditions we establish a rigorous sub-linear bound on the regret of the approach (in terms of misallocated data), as well as a rigorous bound on suboptimality of the selected classifier. Our accuracy estimates using real-world datasets only entail mild violations of the theoretical scenario, suggesting that the practical behavior of DAUB is likely to approach the idealized behavior.Comment: AAAI-2016: The Thirtieth AAAI Conference on Artificial Intelligenc

    Hybrid Reinforcement Learning with Expert State Sequences

    Full text link
    Existing imitation learning approaches often require that the complete demonstration data, including sequences of actions and states, are available. In this paper, we consider a more realistic and difficult scenario where a reinforcement learning agent only has access to the state sequences of an expert, while the expert actions are unobserved. We propose a novel tensor-based model to infer the unobserved actions of the expert state sequences. The policy of the agent is then optimized via a hybrid objective combining reinforcement learning and imitation learning. We evaluated our hybrid approach on an illustrative domain and Atari games. The empirical results show that (1) the agents are able to leverage state expert sequences to learn faster than pure reinforcement learning baselines, (2) our tensor-based action inference model is advantageous compared to standard deep neural networks in inferring expert actions, and (3) the hybrid policy optimization objective is robust against noise in expert state sequences.Comment: AAAI 2019; https://github.com/XiaoxiaoGuo/tensor4r
    • …
    corecore