48 research outputs found

    Depth Profile Analysis of Thin Oxide Layers on Polycrystalline Fe–Cr

    Get PDF
    Surfaces of polycrystalline ferritic Fe–Cr steel with grain sizes of about 13 µ m in diameter were investigated with surface sensitive techniques. Thin oxide layers, with a maximum thickness of about 100 nm, were grown by oxidation in air at temperatures up to 450°C and were subsequently characterized using time-of-flight secondary ion mass spectrometry (TOF-SIMS) and atomic force microscopy. Correlative microscopy was applied, which allows for element-specific depth profiles on selected grains with a particular crystal orientation. A strong correlation between the grain orientation and the thickness of the oxide layer was found. The sequence in the oxidation growth rate of ferritic Fe–Cr steel crystal planes is found to be {011} > {111} > {001}, which is unexpectedly opposed to known Fe-based systems. Moreover, for the first time, the Cr/Fe ratio throughout the oxide layer has been determined per grain orientation. A clear order from high to low of {001} > {111} > {011} was detected

    Performance comparison of three trypsin columns used in liquid chromatography

    Get PDF
    Trypsin is the most widely used enzyme in proteomic research due to its high specificity. Although the in-solution digestion is predominantly used, it has several drawbacks, such as long digestion times, autolysis, and intolerance to high temperatures or organic solvents. To overcome these shortcomings trypsin was covalently immobilized on solid support and tested for its proteolytic activity. Trypsin was immobilized on bridge-ethyl hybrid silica sorbent with 300 Å pores, packed in 2.1 × 30 mm column and compared with Perfinity and Poroszyme trypsin columns. Catalytic efficiency of enzymatic reactors was tested using Nα-Benzoyl-L-arginine 4-nitroanilide hydrochloride as a substrate. The impact of buffer pH, mobile phase flow rate, and temperature on enzymatic activity was investigated. Digestion speed generally increased with the temperature from 20 to 37 °C. Digestion speed also increased with pH from 7.0 to 9.0; the activity of prototype enzyme reactor was highest at pH 9.0, when it activity exceeded both commercial reactors. Preliminary data for fast protein digestion are presented

    Review of SRD5A3 Disease-Causing Sequence Variants and Ocular Findings in Steroid 5α-Reductase Type 3 Congenital Disorder of Glycosylation, and a Detailed New Case

    Get PDF
    Steroid 5α-reductase type 3 congenital disorder of glycosylation (SRD5A3-CDG) is a severe metabolic disease manifesting as muscle hypotonia, developmental delay, cerebellar ataxia and ocular symptoms; typically, nystagmus and optic disc pallor. Recently, early onset retinal dystrophy has been reported as an additional feature. In this study, we summarize ocular phenotypes and SRD5A3 variants reported to be associated with SRD5A3-CDG. We also describe in detail the ophthalmic findings in a 12-year-old Czech child harbouring a novel homozygous variant, c.436G>A, p.(Glu146Lys) in SRD5A3. The patient was reviewed for congenital nystagmus and bilateral optic neuropathy diagnosed at 13 months of age. Examination by spectral domain optical coherence tomography and fundus autofluorescence imaging showed clear signs of retinal dystrophy not recognized until our investigation. Best corrected visual acuity was decreased to 0.15 and 0.16 in the right and left eye, respectively, with a myopic refractive error of -3.0 dioptre sphere (DS) / -2.5 dioptre cylinder (DC) in the right and -3.0 DS / -3.0 DC in the left eye. The proband also had optic head nerve drusen, which have not been previously observed in this syndrome

    Systematic study of Mn-doping trends in optical properties of (Ga,Mn)As

    Get PDF
    We report on a systematic study of optical properties of (Ga,Mn)As epilayers spanning the wide range of accessible substitutional Mn_Ga dopings. The growth and post-growth annealing procedures were optimized for each nominal Mn doping in order to obtain films which are as close as possible to uniform uncompensated (Ga,Mn)As mixed crystals. We observe a broad maximum in the mid-infrared absorption spectra whose position exhibits a prevailing blue-shift for increasing Mn-doping. In the visible range, a peak in the magnetic circular dichroism blue shifts with increasing Mn-doping. These observed trends confirm that disorder-broadened valence band states provide a better one-particle representation for the electronic structure of high-doped (Ga,Mn)As with metallic conduction than an energy spectrum assuming the Fermi level pinned in a narrow impurity band.Comment: 22 pages, 14 figure

    The Phenotypic Spectrum of 47 Czech Patients with Single, Large-Scale Mitochondrial DNA Deletions

    Get PDF
    BACKGROUND: In this retrospective study, we analysed clinical, biochemical and molecular genetic data of 47 Czech patients with Single, Large-Scale Mitochondrial DNA Deletions (SLSMD). METHODS: The diagnosis was based on the long-range PCR (LX-PCR) screening of mtDNA isolated from muscle biopsy in 15 patients, and from the buccal swab, urinary epithelial cells and blood in 32 patients. RESULTS: A total of 57% patients manifested before the age of 16. We did not find any significant difference between paediatric and adult manifestation in either the proportion of patients that would develop extraocular symptoms, or the timespan of its progression. The survival rate in patients with Pearson Syndrome reached 60%. Altogether, five patients manifested with atypical phenotype not fulfilling the latest criteria for SLSMD. No correlation was found between the disease severity and all heteroplasmy levels, lengths of the deletion and respiratory chain activities in muscle. CONCLUSIONS: Paediatric manifestation of Progressive External Ophthalmoplegia (PEO) is not associated with a higher risk of multisystemic involvement. Contrary to PEO and Kearns-Sayre Syndrome Spectrum, Pearson Syndrome still contributes to a significant childhood mortality. SLSMD should be considered even in cases with atypical presentation. To successfully identify carriers of SLSMD, a repeated combined analysis of buccal swab and urinary epithelial cells is neede

    Experimental observation of the optical spin-orbit torque

    Full text link
    Spin polarized carriers electrically injected into a magnet from an external polarizer can exert a spin transfer torque (STT) on the magnetization. The phe- nomenon belongs to the area of spintronics research focusing on manipulating magnetic moments by electric fields and is the basis of the emerging technologies for scalable magnetoresistive random access memories. In our previous work we have reported experimental observation of the optical counterpart of STT in which a circularly polarized pump laser pulse acts as the external polarizer, allowing to study and utilize the phenomenon on several orders of magnitude shorter timescales than in the electric current induced STT. Recently it has been theoretically proposed and experimentally demonstrated that in the absence of an external polarizer, carriers in a magnet under applied electric field can develop a non-equilibrium spin polarization due to the relativistic spin-orbit coupling, resulting in a current induced spin-orbit torque (SOT) acting on the magnetization. In this paper we report the observation of the optical counterpart of SOT. At picosecond time-scales, we detect excitations of magnetization of a ferromagnetic semiconductor (Ga,Mn)As which are independent of the polarization of the pump laser pulses and are induced by non-equilibrium spin-orbit coupled photo-holes.Comment: 4 figure, supplementary information. arXiv admin note: text overlap with arXiv:1101.104

    Experimental observation of the optical spin transfer torque

    Full text link
    The spin transfer torque is a phenomenon in which angular momentum of a spin polarized electrical current entering a ferromagnet is transferred to the magnetization. The effect has opened a new research field of electrically driven magnetization dynamics in magnetic nanostructures and plays an important role in the development of a new generation of memory devices and tunable oscillators. Optical excitations of magnetic systems by laser pulses have been a separate research field whose aim is to explore magnetization dynamics at short time scales and enable ultrafast spintronic devices. We report the experimental observation of the optical spin transfer torque, predicted theoretically several years ago building the bridge between these two fields of spintronics research. In a pump-and-probe optical experiment we measure coherent spin precession in a (Ga,Mn)As ferromagnetic semiconductor excited by circularly polarized laser pulses. During the pump pulse, the spin angular momentum of photo-carriers generated by the absorbed light is transferred to the collective magnetization of the ferromagnet. We interpret the observed optical spin transfer torque and the magnetization precession it triggers on a quantitative microscopic level. Bringing the spin transfer physics into optics introduces a fundamentally distinct mechanism from the previously reported thermal and non-thermal laser excitations of magnets. Bringing optics into the field of spin transfer torques decreases by several orders of magnitude the timescales at which these phenomena are explored and utilized.Comment: 11 pages, 4 figure
    corecore