139 research outputs found

    Enhanced Nuclear Engineering Simulators

    Get PDF
    Engineering simulation is a sophisticated multi-purpose technology allowing the users of simulators to run a variety of engineering activities due to the possibility of modifying the simulated plant architecture and components, to adjust parameters, to test alternative solutions. Engineering Simulators (ES) have been built and used worldwide for a variety of purposes: - Development and refinement of the plant design or plant modifications - Safety analyses focused on the overall system behaviour - Verification and Validation (V&V) of systems and components - Development of Operational and Emergency Procedures - Pre-Training of operators and supervisors - High level education and Communication activities - Human Factor Engineering Analysis - Adaptive Control System training Engineering Simulators also play a role in developing and maintaining key nuclear skills, as knowledge repositories and tools for training at various levels of expertise

    ALDH3A1 overexpression in melanoma and lung tumors drives cancer stem cell expansion, impairing immune surveillance through enhanced PD-L1 output

    Get PDF
    Melanoma and non-small-cell lung carcinoma (NSCLC) cell lines are characterized by an intrinsic population of cancer stem-like cells (CSC), and high expression of detoxifying isozymes, the aldehyde dehydrogenases (ALDHs), regulating the redox state. In this study, using melanoma and NSCLC cells, we demonstrate that ALDH3A1 isozyme overexpression and activity is closely associated with a highly aggressive mesenchymal and immunosuppressive profile. The contribution of ALDH3A1 to the stemness and immunogenic status of melanoma and NSCLC cells was evaluated by their ability to grow in 3D forming tumorspheres, and by the expression of markers for stemness, epithelial to mesenchymal transition (EMT), and inflammation. Furthermore, in specimens from melanoma and NSCLC patients, we investigated the expression of ALDH3A1, PD-L1, and cyclooxygenase-2 (COX-2) by immunohistochemistry. We show that cells engineered to overexpress the ALDH3A1 enzyme enriched the CSCs population in melanoma and NSCLC cultures, changing their transcriptome. In fact, we found increased expression of EMT markers, such as vimentin, fibronectin, and Zeb1, and of pro-inflammatory and immunosuppressive mediators, such as NFkB, prostaglandin E2, and interleukin-6 and-13. ALDH3A1 overexpression enhanced PD-L1 output in tumor cells and resulted in reduced proliferation of peripheral blood mononuclear cells when co-cultured with tumor cells. Furthermore, in tumor specimens from melanoma and NSCLC patients, ALDH3A1 expression was invariably correlated with PD-L1 and the pro-inflammatory marker COX-2. These findings link ALDH3A1 expression to tumor stemness, EMT and PD-L1 expression, and suggest that aldehyde detoxification is a redox metabolic pathway that tunes the immunological output of tumors

    Analysis of apoptosis methods recently used in Cancer Research and Cell Death & Disease publications

    Get PDF

    Studies of η\eta and η\eta' production in pppp and ppPb collisions

    Full text link
    The production of η\eta and η\eta' mesons is studied in proton-proton and proton-lead collisions collected with the LHCb detector. Proton-proton collisions are studied at center-of-mass energies of 5.025.02 and 13 TeV13~{\rm TeV}, and proton-lead collisions are studied at a center-of-mass energy per nucleon of 8.16 TeV8.16~{\rm TeV}. The studies are performed in center-of-mass rapidity regions 2.5<yc.m.<3.52.5<y_{\rm c.m.}<3.5 (forward rapidity) and 4.0<yc.m.<3.0-4.0<y_{\rm c.m.}<-3.0 (backward rapidity) defined relative to the proton beam direction. The η\eta and η\eta' production cross sections are measured differentially as a function of transverse momentum for 1.5<pT<10 GeV1.5<p_{\rm T}<10~{\rm GeV} and 3<pT<10 GeV3<p_{\rm T}<10~{\rm GeV}, respectively. The differential cross sections are used to calculate nuclear modification factors. The nuclear modification factors for η\eta and η\eta' mesons agree at both forward and backward rapidity, showing no significant evidence of mass dependence. The differential cross sections of η\eta mesons are also used to calculate η/π0\eta/\pi^0 cross section ratios, which show evidence of a deviation from the world average. These studies offer new constraints on mass-dependent nuclear effects in heavy-ion collisions, as well as η\eta and η\eta' meson fragmentation.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/Publications/p/LHCb-PAPER-2023-030.html (LHCb public pages

    Fraction of χc\chi_c decays in prompt J/ψJ/\psi production measured in pPb collisions at sNN=8.16\sqrt{s_{NN}}=8.16 TeV

    Full text link
    The fraction of χc1\chi_{c1} and χc2\chi_{c2} decays in the prompt J/ψJ/\psi yield, Fχc=σχcJ/ψ/σJ/ψF_{\chi c}=\sigma_{\chi_c \to J/\psi}/\sigma_{J/\psi}, is measured by the LHCb detector in pPb collisions at sNN=8.16\sqrt{s_{NN}}=8.16 TeV. The study covers the forward (1.5<y<4.01.5<y^*<4.0) and backward (5.0<y<2.5-5.0<y^*<-2.5) rapidity regions, where yy^* is the J/ψJ/\psi rapidity in the nucleon-nucleon center-of-mass system. Forward and backward rapidity samples correspond to integrated luminosities of 13.6 ±\pm 0.3 nb1^{-1} and 20.8 ±\pm 0.5 nb1^{-1}, respectively. The result is presented as a function of the J/ψJ/\psi transverse momentum pT,J/ψp_{T,J/\psi} in the range 1<pT,J/ψ<20<p_{T, J/\psi}<20 GeV/cc. The FχcF_{\chi c} fraction at forward rapidity is compatible with the LHCb measurement performed in pppp collisions at s=7\sqrt{s}=7 TeV, whereas the result at backward rapidity is 2.4 σ\sigma larger than in the forward region for 1<pT,J/ψ<31<p_{T, J/\psi}<3 GeV/cc. The increase of FχcF_{\chi c} at low pT,J/ψp_{T, J/\psi} at backward rapidity is compatible with the suppression of the ψ\psi(2S) contribution to the prompt J/ψJ/\psi yield. The lack of in-medium dissociation of χc\chi_c states observed in this study sets an upper limit of 180 MeV on the free energy available in these pPb collisions to dissociate or inhibit charmonium state formation.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-028.html (LHCb public pages

    Enhanced production of Λb0\Lambda_{b}^{0} baryons in high-multiplicity pppp collisions at s=13\sqrt{s} = 13 TeV

    Full text link
    The production rate of Λb0\Lambda_{b}^{0} baryons relative to B0B^{0} mesons in pppp collisions at a center-of-mass energy s=13\sqrt{s} = 13 TeV is measured by the LHCb experiment. The ratio of Λb0\Lambda_{b}^{0} to B0B^{0} production cross-sections shows a significant dependence on both the transverse momentum and the measured charged-particle multiplicity. At low multiplicity, the ratio measured at LHCb is consistent with the value measured in e+ee^{+}e^{-} collisions, and increases by a factor of 2\sim2 with increasing multiplicity. At relatively low transverse momentum, the ratio of Λb0\Lambda_{b}^{0} to B0B^{0} cross-sections is higher than what is measured in e+ee^{+}e^{-} collisions, but converges with the e+ee^{+}e^{-} ratio as the momentum increases. These results imply that the evolution of heavy bb quarks into final-state hadrons is influenced by the density of the hadronic environment produced in the collision. Comparisons with a statistical hadronization model and implications for the mechanisms enforcing quark confinement are discussed.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-027.html (LHCb public pages

    A measurement of ΔΓs\Delta \Gamma_{s}

    Full text link
    Using a dataset corresponding to 9 fb19~\mathrm{fb}^{-1} of integrated luminosity collected with the LHCb detector between 2011 and 2018 in proton-proton collisions, the decay-time distributions of the decay modes Bs0J/ψηB_s^0 \rightarrow J/\psi \eta' and Bs0J/ψπ+πB_s^0 \rightarrow J/\psi \pi^{+} \pi^{-} are studied. The decay-width difference between the light and heavy mass eigenstates of the Bs0B_s^0 meson is measured to be ΔΓs=0.087±0.012±0.009ps1\Delta \Gamma_s = 0.087 \pm 0.012 \pm 0.009 \, \mathrm{ps}^{-1}, where the first uncertainty is statistical and the second systematic.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-025.htm

    Observation of strangeness enhancement with charmed mesons in high-multiplicity pPbp\mathrm{Pb} collisions at sNN=8.16\sqrt {s_{\mathrm{NN}}}=8.16\,TeV

    Full text link
    The production of prompt Ds+D^+_{s} and D+D^+ mesons is measured by the LHCb experiment in proton-lead (pPbp\mathrm{Pb}) collisions in both the forward (1.5<y<4.01.5<y^*<4.0) and backward (5.0<y<2.5-5.0<y^*<-2.5) rapidity regions at a nucleon-nucleon center-of-mass energy of sNN=8.16\sqrt {s_{\mathrm{NN}}}=8.16\,TeV. The nuclear modification factors of both Ds+D^+_{s} and D+D^+ mesons are determined as a function of transverse momentum, pTp_{\mathrm{T}}, and rapidity. In addition, the Ds+D^+_{s} to D+D^+ cross-section ratio is measured as a function of the charged particle multiplicity in the event. An enhanced Ds+D^+_{s} to D+D^+ production in high-multiplicity events is observed for the whole measured pTp_{\mathrm{T}} range, in particular at low pTp_{\mathrm{T}} and backward rapidity, where the significance exceeds six standard deviations. This constitutes the first observation of strangeness enhancement in charm quark hadronization in high-multiplicity pPbp\mathrm{Pb} collisions. The results are also qualitatively consistent with the presence of quark coalescence as an additional charm quark hadronization mechanism in high-multiplicity proton-lead collisions.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-021.html (LHCb public pages
    corecore