100 research outputs found

    Minimum performance level definition for bone plate testing according to standard: A preliminary study

    Get PDF
    In silico modeling of osteosynthesis medical devices allows the reduction of the time required for experimental tests and the introduction of “simulation-driven design”. Using a wise combination of these techniques and analytical calculations, it is possible to relate the experimental results, which are mandatory for regulatory purposes, to the plate physiological application and prevent the occurrence of complications in the early stages after the orthopedic device implantation on humans and animals

    In Silico Meta-Analysis of Boundary Conditions for Experimental Tests on the Lumbar Spine

    Get PDF
    The study of the spine range of motion under given external load has been the object of many studies in literature, finalised to a better understanding of the spine biomechanics, its physiology, eventual pathologic conditions and possible rehabilitation strategies. However, the huge amount of experimental work performed so far cannot be straightforwardly analysed due to significant differences among loading set-ups. This work performs a meta-analysis of various boundary conditions in literature, focusing on the flexion/extension behaviour of the lumbar spine. The comparison among range of motions is performed virtually through a validated multibody model. Results clearly illustrated the effect of various boundary conditions which can be met in literature, so justifying differences of biomechanical behaviours reported by authors implementing different set-up: for example, a higher value of the follower load can indeed result in a stiffer behaviour; the application of force producing spurious moments results in an apparently more deformable behaviour, however the respective effects change at various segments along the spine due to its natural curvature. These outcomes are reported not only in qualitative, but also in quantitative terms. The numerical approach here followed to perform the meta-analysis is original and it proved to be effective thanks to the bypass of the natural variability among specimens which might completely or partially hinder the effect of some boundary conditions. In addition, it can provide very complete information since the behaviour of each functional spinal unit can be recorded. On the whole, the work provided an extensive review of lumbar spine loading in flexion/extension

    A multibody model for the optimization of hip arthroplasty in relation to range of movement

    Get PDF
    Abstract Background The dislocation of the prosthesized hip is a relevant postoperative complication; this adverse outcome is dependent on the specific patient anatomy and on the artificial joint design. The geometry of the reconstructed hip is one of the key factors and it is usually designed at the time of the pre-operative planning when the stem model and size, the head diameter and its offset, and the acetabular cup orientation are selected. Aims In this work, the authors have developed a numerical model to support the pre-operative planning, allowing assessing the hip range of motion, once the geometry of the implant has been defined. Methods A multi-body model of a prosthesized hip has been developed, and a dislocating movement has been applied; the software is able to assess the entity of displacements and of applied forces which can produce hip dislocation. Results As a proof of concept, multiple combinations of geometric factors have been examined that are the head diameter, the acetabular cup anteversion and its inclination, reaching a total number of 675 configurations. This software is able to analyse and compare all configurations in few minutes. Conclusion The developed numerical model can be a support to quickly compare a great number of solutions from the point of view of hip stability, reaching a comprehensive view of all possibilities, and giving a contribute to the final aim that is surgery optimization, in relation to each specific patient

    Kinematics and kinetics comparison of ultra-congruent versus medial-pivot designs for total knee arthroplasty by multibody analysis

    Get PDF
    Nowadays, several configurations of total knee arthroplasty (TKA) implants are commercially available whose designs resulted from clinical and biomechanical considerations. Previous research activities led to the development of the so-called medial-pivot (MP) design. However, the actual benefits of the MP, with respect to other prosthesis designs, are still not well understood. The present work compares the impact of two insert geometries, namely the ultra-congruent (UC) and medial-pivot (MP), on the biomechanical behaviour of a bicondylar total knee endoprosthesis. For this purpose, a multibody model of a lower limb was created alternatively integrating the two implants having the insert geometry discretized. Joint dynamics and contact pressure distributions were evaluated by simulating a squat motion. Results showed a similar tibial internal rotation range of about 3.5°, but an early rotation occurs for the MP design. Furthermore, the discretization of the insert geometry allowed to efficiently derive the contact pressure distributions, directly within the multibody simulation framework, reporting peak pressure values of 33 MPa and 20 MPa for the UC and MP, respectively. Clinically, the presented findings confirm the possibility, through a MP design, to achieve a more natural joint kinematics, consequently improving the post-operative patient satisfaction and potentially reducing the occurrence of phenomena leading to the insert loosening

    Feature-Based Modelling of Laryngoscope Blades for Customized Applications

    Get PDF
    AbstractLaryngoscopes are used as diagnostic devices for throat inspection or as an aid to intubation. Their blade must be geometrically compatible with patients' anatomy to provide a good view to doctors with minimal discomfort to patients. For this reason, this paper was aimed to investigate the feasibility of producing customized blades.The customizable blade model was developed following a feature-based approach with eight morphological parameters. The thickness of such a blade was determined through numerical simulations of ISO certification tests, where the finite element mesh was obtained by morphing a 'standard' mesh.The following procedure was applied: the model was built from the selected parameters; the blade was tested in silico; finally, the blade was produced by additive manufacturing with an innovative biodegradable material (Hemp Bio-Plastic® -HBP-) claimed to feature superior mechanical properties. The procedure evidenced that the mechanical properties of current biodegradable materials are unsuitable for the application unless the certification norm is revised, as it is expected

    Biomechanical evaluation of an intramedullary nailing device by multibody analysis

    Get PDF
    The present study investigates the suitability of the multibody method as alternative approach to the finite element method in order to evaluate biomechanical performances of a Marchetti-Vicenzi self-locking nail under dynamic loading. Torsional, compressive and bending dynamic loads were simulated. Results in terms of bone-device contact forces and device stiffness were obtained confirming and supporting issues observed in clinical reports
    • …
    corecore