246 research outputs found

    Observation of Simultaneous Oscillation of Multiple Modes in a CW 300 GHz Gyrotron

    Get PDF
    Multi-mode oscillation was observed in a 300 GHz fully CW gyrotron. It has been developed and installed in the Research Center for Development of Far-Infrared Region, University of Fukui as a power source of a submillimeter-wave material processing system. This gyrotron delivers 1.75 kW/CW at maximum. The radiation pattern is a Gaussian beam when the magnetic field strength Bc at the cavity is properly adjusted. However, within a range of Bc values, simultaneous oscillation of competing modes is observed, manifesting in radiation of the output power in multiple directions

    Vasospastic angina resulting in sudden cardiac arrest, initially misdiagnosed as a psychiatric disorder

    Get PDF
    AbstractA 51-year-old-woman with a history of ablation therapy due to Wolff–Parkinson–White syndrome had been suffering from ambiguous chest pain, prompting investigation by several cardiologists. After being dissatisfied with a psychiatric disorder diagnosis, she was admitted to our hospital for further investigation. She lost her consciousness due to a sudden cardiac arrest shortly after admission. A provocation test indicated vasospastic angina associated with a diffuse spastic pattern of her left anterior descending artery.<Learning objective: This case demonstrates that implantation of a cardioverter defibrillator may be avoided if the angiographic pattern of the vasospasm is recognized, the condition is correctly diagnosed, and appropriate medications are prescribed.

    formation of a laminar electron flow for 300GHz high-power pulsed gyrotron

    Get PDF
    This paper describes the design of a triode magnetron injection gun for use in a 200 kW, 300 GHz gyrotron. As power and frequency increase, the performance of the gyrotron becomes quite sensitive to the quality of the electron beam. Formation of a laminar electron flow is essential for the realization of a high quality beam with a small velocity spread. In this study, a new method is developed for a quantitative evaluation of the laminarity and is applied to optimize the electrode design. The laminarity depends not only on conventional design parameters such as the cathode slant angle but also on the spatial distribution of the electric field along the beam trajectory. In the optimized design, the velocity pitch factors, a, larger than 1.2 are obtained at 65 kV, 10A with spreads, Da, less than 5%

    Disseminated Astrocytoma. A Neuropathologc Study

    Get PDF
    Neuropathologic findings of a case of disseminated astrocytoma are described in a 47-year-old woman who had progressive mental deterioration, gait disturbance and urinary incontinence. She became comatose and tetraplegic in the later stage of a one year course. Neuropathologically, the brain was of normal size and neoplastic astrocytes of low malignant nature and variable cellularity were scattered throughout the brain, which was examined from the frontal lobe to the medulla oblongata. The tumor cells were especially prominent in the subpial and subependymal regions. Our case was thought to be intermediate between gliomatosis cerebri and multicentric glioblastoma

    Observation of Dynamic Interactions between Fundamental and Second-Harmonic Modes in a High-Power Sub-Terahertz Gyrotron Operating in Regimes of Soft and Hard Self-Excitation

    Get PDF
    Dynamic mode interaction between fundamental and second-harmonic modes has been observed in high-power sub-terahertz gyrotrons [T. Notake et al., Phys. Rev. Lett. 103, 225002 (2009); T. Saito et al. Phys. Plasmas 19, 063106 (2012)]. Interaction takes place between a parasitic fundamental or firstharmonic (FH) mode and an operating second-harmonic (SH) mode, as well as among SH modes. In particular, nonlinear excitation of the parasitic FH mode in the hard self-excitation regime with assistance of a SH mode in the soft self-excitation regime was clearly observed. Moreover, both cases of stable twomode oscillation and oscillation of the FH mode only were observed. These observations and theoretical analyses of the dynamic behavior of the mode interaction verify the nonlinear hard self-excitation of the FH mode

    The role of RND-type efflux pumps in multidrug-resistant mutants of Klebsiella pneumoniae

    Get PDF
    The emergence of multidrug-resistant Klebsiella pneumoniae is a worldwide problem. K. pneumoniae possesses numerous resistant genes in its genome. We isolated mutants resistant to various antimicrobials in vitro and investigated the importance of intrinsic genes in acquired resistance. The isolation frequency of the mutants was 10(-7)-10(-9). Of the multidrug-resistant mutants, hyper-multidrug-resistant mutants (EB256-1, EB256-2, Nov1-8, Nov2-2, and OX128) were identified, and accelerated efflux activity of ethidium from the inside to the outside of the cells was observed in these mutants. Therefore, we hypothesized that the multidrug efflux pump, especially RND-type efflux pump, would be related to changes of the phenotype. We cloned all RND-type multidrug efflux pumps from the K. pneumoniae genome and characterized them. KexEF and KexC were powerful multidrug efflux pumps, in addition to AcrAB, KexD, OqxAB, and EefABC, which were reported previously. It was revealed that the expression of eefA was increased in EB256-1 and EB256-2: the expression of oqxA was increased in OX128; the expression of kexF was increased in Nov2-2. It was found that a region of 1,485 bp upstream of kexF, was deleted in the genome of Nov2-2. K. pneumoniae possesses more potent RND-multidrug efflux systems than E. coli. However, we revealed that most of them did not contribute to the drug resistance of our strain at basic levels of expression. On the other hand, it was also noted that the overexpression of these pumps could lead to multidrug resistance based on exposure to antimicrobial chemicals. We conclude that these pumps may have a role to maintain the intrinsic resistance of K. pneumoniae when they are overexpressed. The antimicrobial chemicals selected many resistant mutants at the same minimum inhibitory concentration (MIC) or a concentration slightly higher than the MIC. These results support the importance of using antibiotics at appropriate concentrations at clinical sites

    A Bacterial Effector Targets Mad2L2, an APC Inhibitor, to Modulate Host Cell Cycling

    Get PDF
    SummaryThe gut epithelium self-renews every several days, providing an important innate defense system that limits bacterial colonization. Nevertheless, many bacterial pathogens, including Shigella, efficiently colonize the intestinal epithelium. Here, we show that the Shigella effector IpaB, when delivered into epithelial cells, causes cell-cycle arrest by targeting Mad2L2, an anaphase-promoting complex/cyclosome (APC) inhibitor. Cyclin B1 ubiquitination assays revealed that APC undergoes unscheduled activation due to IpaB interaction with the APC inhibitor Mad2L2. Synchronized HeLa cells infected with Shigella failed to accumulate Cyclin B1, Cdc20, and Plk1, causing cell-cycle arrest at the G2/M phase in an IpaB/Mad2L2-dependent manner. IpaB/Mad2L2-dependent cell-cycle arrest by Shigella infection was also demonstrated in rabbit intestinal crypt progenitors, and the IpaB-mediated arrest contributed to efficient colonization of the host cells. These results strongly indicate that Shigella employ special tactics to influence epithelial renewal in order to promote bacterial colonization of intestinal epithelium

    Effects of the order of exposure to antimicrobials on the incidence of multidrug-resistant Pseudomonas aeruginosa

    Get PDF
    Multidrug-resistant Pseudomonas aeruginosa (MDRP) is one of the most important pathogens in clinical practice. To clarify the mechanisms contributing to its emergence, we isolated MDRPs using the P. aeruginosa PAO1, the whole genome sequence of which has already been elucidated. Mutant strains resistant to carbapenems, aminoglycosides, and new quinolones, which are used to treat P. aeruginosa infections, were isolated; however, none met the criteria for MDRPs. Then, PAO1 strains were exposed to these antimicrobial agents in various orders and the appearance rate of MDRP varied depending on the order of exposure; MDRPs more frequently appeared when gentamicin was applied before ciprofloxacin, but were rarely isolated when ciprofloxacin was applied first. Exposure to ciprofloxacin followed by gentamicin increased the expression of MexCD-OprJ, an RND-type multidrug efflux pump, due to the NfxB mutation. In contrast, exposure to gentamicin followed by ciprofloxacin resulted in more mutations in DNA gyrase. These results suggest that the type of quinolone resistance mechanism is related to the frequency of MDRP and that the risk of MDRP incidence is highly dependent on the order of exposure to gentamicin and ciprofloxacin

    S-Nitrosated alpha-1-acid glycoprotein exhibits antibacterial activity against multidrug-resistant bacteria strains and synergistically enhances the effect of antibiotics

    Get PDF
    Alpha-1-acid glycoprotein (AGP) is a major acute-phase protein. Biosynthesis of AGP increases markedly during inflammation and infection, similar to nitric oxide (NO) biosynthesis. AGP variant A (AGP) contains a reduced cysteine (Cys149). Previously, we reported that S-nitrosated AGP (SNO-AGP) synthesized by reaction with a NO donor, possessed very strong broad-spectrum antimicrobial activity (IC50 = 10−9-10−6 M). In this study, using a cecal ligation and puncture animal model, we confirmed that AGP can be endogenously S-nitrosated during infection. Furthermore, we examined the antibacterial property of SNO-AGP against multidrug-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa to investigate the involvement of SNO-AGP in the host defense system. Our results showed that SNO-AGP could inhibit multidrug efflux pump, AcrAB-TolC, a major contributor to bacterial multidrug resistance. In addition, SNO-AGP decreased biofilm formation and ATP level in bacteria, indicating that SNO-AGP can revert drug resistance. It was also noteworthy that SNO-AGP showed synergistic effects with the existing antibiotics (oxacillin, imipenem, norfloxacin, erythromycin, and tetracycline). In conclusion, SNO-AGP participated in the host defense system and has potential as a novel agent for single or combination antimicrobial therapy
    corecore