96 research outputs found

    MicroRNAs in cardiovascular disease

    Get PDF
    Rapid and accurate diagnosis of heart attacks—and the assessment of damage—are critical for improving coronary care. Mature microRNAs (miRNAs) are abundant, easily measured, and relatively stable in blood plasma. If they prove indicative of disease states, miRNAs measured from peripheral blood may be a particularly attractive source for routine clinical assessments

    Cardiovascular Disease, Single Nucleotide Polymorphisms; and the Renin Angiotensin System: Is There a MicroRNA Connection?

    Get PDF
    Essential hypertension is a complex disorder, caused by the interplay between many genetic variants, gene-gene interactions, and environmental factors. Given that the renin-angiotensin system (RAS) plays an important role in blood pressure (BP) control, cardiovascular regulation, and cardiovascular remodeling, special attention has been devoted to the investigation of single-nucleotide polymorphisms (SNP) harbored in RAS genes that may be associated with hypertension and cardiovascular disease. MicroRNAs (miRNAs) are a family of small, ∼21-nucleotide long, and nonprotein-coding RNAs that recognize target mRNAs through partial complementary elements in the 3′-untranslated region (3′-UTR) of mRNAs and inhibit gene expression by targeting mRNAs for translational repression or destabilization. Since miRNA SNPs (miRSNPs) can create, destroy, or modify miRNA binding sites, this review focuses on the hypothesis that transcribed target SNPs harbored in RAS mRNAs, that alter miRNA gene regulation and consequently protein expression, may contribute to cardiovascular disease susceptibility

    ‘Complementary peptides’: a response

    Full text link

    Maximizing the Efficacy of CRISPR/Cas Homology-Directed Repair Gene Targeting

    Get PDF
    Clustered regularly interspaced short palindromic repeats/CRISPR-associated system (CRISPR/Cas) is a powerful gene editing tool that can introduce double-strand breaks (DSBs) at precise target sites in genomic DNA. In mammalian cells, the CRISPR/Cas-generated DSBs can be repaired by either template-free error-prone end joining (e.g., non-homologous end joining/microhomology-mediated end joining [NHEJ]/[MMEJ]) or templated error-free homology-directed repair (HDR) pathways. CRISPR/Cas with NHEJ/MMEJ DNA repair results in various length insertions/deletion mutations (indels), which can cause frameshift mutations leading to a stop codon and subsequent gene-specific knockout (i.e., loss of function). In contrast, CRISPR/Cas with HDR DNA repair, utilizing an exogenous repair template harboring specific nucleotide (nt) changes, can be employed to intentionally edit out or introduce mutations or insertions at specific genomic sites (i.e., targeted gene knock-in). This review provides an overview of HDR-based gene-targeting strategies to facilitate the knock-in process, including improving gRNA cleavage efficiency, optimizing HDR efficacy, decreasing off-target effects, suppressing NHEJ/MMEJ activity, and thus expediting the screening of CRISPR/Cas-edited clonal cells

    Physician reported perception in the treatment of high blood pressure does not correspond to practice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High blood pressure is a significant health problem world-wide. Physician factors play a significant role in the suboptimal control of hypertension in the United States. We sought to better understand primary care physician's opinions regarding use of hypertension guidelines, patient and physician related barriers to treatment and physician treatment decision making in the management of hypertension as part of a first step in developing research tools and interventions designed to address these issues.</p> <p>Methods</p> <p>An IRB approved survey pertaining to physician opinion regarding the treatment of hypertension. Items consisted of questions regarding: 1) knowledge of hypertension treatment guidelines; 2) barriers to hypertension control (physician vs. patient); and 3) self-estimation of physician treatment of hypertension. Descriptive Statistics were used to describe results.</p> <p>Results</p> <p>All physicians were board certified in family or general internal medicine (n = 28). Practices were located in urban (n = 12), suburban (n = 14) and inner city locations (n = 1). All physicians felt they did a good job of treating hypertension. Most physicians felt the biggest barrier to hypertension control was patient non-compliance. Half of physicians would fail to intensify treatment for hypertension when blood pressure was above recommended levels for all disease states studied (essential hypertension, heart disease, diabetes, and renal disease).</p> <p>Conclusion</p> <p>Physician ability to assess personal performance in the treatment of hypertension and physician opinion that patient noncompliance is the greatest barrier to optimal hypertension control is contradictory to reported practice behavior. Optimal blood pressure control requires increased physician understanding on the evaluation and management of blood pressure. These data provide crucial formative data to enhance the content validity of physician education efforts currently underway to improve the treatment of blood pressure in the primary care setting.</p

    MiR-155 Induction by F. novicida but Not the Virulent F. tularensis Results in SHIP Down-Regulation and Enhanced Pro-Inflammatory Cytokine Response

    Get PDF
    The intracellular Gram-negative bacterium Francisella tularensis causes the disease tularemia and is known for its ability to subvert host immune responses. Previous work from our laboratory identified the PI3K/Akt pathway and SHIP as critical modulators of host resistance to Francisella. Here, we show that SHIP expression is strongly down-regulated in monocytes and macrophages following infection with F. tularensis novicida (F.n.). To account for this negative regulation we explored the possibility that microRNAs (miRs) that target SHIP may be induced during infection. There is one miR that is predicted to target SHIP, miR-155. We tested for induction and found that F.n. induced miR-155 both in primary monocytes/macrophages and in vivo. Using luciferase reporter assays we confirmed that miR-155 led to down-regulation of SHIP, showing that it specifically targets the SHIP 3′UTR. Further experiments showed that miR-155 and BIC, the gene that encodes miR-155, were induced as early as four hours post-infection in primary human monocytes. This expression was dependent on TLR2/MyD88 and did not require inflammasome activation. Importantly, miR-155 positively regulated pro-inflammatory cytokine release in human monocytes infected with Francisella. In sharp contrast, we found that the highly virulent type A SCHU S4 strain of Francisella tularensis (F.t.) led to a significantly lower miR-155 response than the less virulent F.n. Hence, F.n. induces miR-155 expression and leads to down-regulation of SHIP, resulting in enhanced pro-inflammatory responses. However, impaired miR-155 induction by SCHU S4 may help explain the lack of both SHIP down-regulation and pro-inflammatory response and may account for the virulence of Type A Francisella

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
    corecore