43 research outputs found

    Planetary optical and infrared imaging

    Get PDF
    The purpose is to obtain and analyze high spatial resolution CCD coronagraphic images of extra-solar planetary material and solar system objects. These data will provide information on the distribution of planetary and proto-planetary material around nearby stars leading to a better understanding of the origin and evolution of the solar system

    Evolutionary Computational Methods for Identifying Emergent Behavior in Autonomous Systems

    Get PDF
    A technique based on Evolutionary Computational Methods (ECMs) was developed that allows for the automated optimization of complex computationally modeled systems, such as autonomous systems. The primary technology, which enables the ECM to find optimal solutions in complex search spaces, derives from evolutionary algorithms such as the genetic algorithm and differential evolution. These methods are based on biological processes, particularly genetics, and define an iterative process that evolves parameter sets into an optimum. Evolutionary computation is a method that operates on a population of existing computational-based engineering models (or simulators) and competes them using biologically inspired genetic operators on large parallel cluster computers. The result is the ability to automatically find design optimizations and trades, and thereby greatly amplify the role of the system engineer

    Five-micron pictures of Jupiter

    Get PDF
    More than 440 five-micron "video" pictures of Jupiter with 1" resolution were made during 1973 September, October, and December. Comparisons of these pictures with color photographs show direct, detailed correlations with the darker "purple" features. Forty-four of these pictures were made just before Pioneer 10 encounter

    Genetic Algorithm Optimizes Q-LAW Control Parameters

    Get PDF
    A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space

    Exploration of Pluto: Search for Applicable Small Satellite Technology

    Get PDF
    Pluto is the last known planet in our Solar System awaiting spacecraft reconnaissance. In its eccentric orbit taking it 50 AU from the Sun, Pluto presently has a thin atmosphere containing methane, which is projected to collapse back to the icy planet\u27s surface in about three decades, following Pluto\u27s 1989 perihelion pass at 30 AU. Based on ground and Earth-orbit-based observing capabilities limited by Pluto\u27s small size and extreme distance, present top-priority scientific questions for the first mission concern Pluto and Charon\u27s surface geology, morphology and composition, and Pluto\u27s neutral atmosphere composition. Budgetary realities preclude a large, many-instrument flyby spacecraft, while distance and launch energy requirements preclude any but the smallest orbiter using presently available launch vehicles and propulsion techniques. A NASA sponsored Pluto Mission Development activity began this year at the Jet Propulsion Laboratory. The Pluto Fast Flyby (PFF) tentative mission baseline utilizes two 125-160 kg spacecraft launched in 1998-99 aboard Titan IV(SRMU)/Centaurs or Protons on 7-10 year direct trajectories to Pluto. Instruments are likely to include a CCO imaging camera combined with an infrared spectrometer, plus an ultraviolet spectrometer. An ultra-stable oscillator is to be added to the telecommunications subsystem for radio occultation measurements. Solid state memory stores data during the brief encounter. to be played back over several months. Cost is the primary design driver with major tradeoffs between spacecraft development, launch services, radioisotope thermoelectric generator procurement and launch approval, and mission operations. Significant benefits are apparent from incorporating small satellite technologies from Earth orbiters, with a primary challenge to upgrade component lifetimes consistent with mission duration. The Pluto Team is presently identifying hardware, software and experience from the small satellite community and elsewhere which will be helpful in implementing the Pluto Fast Flyby mission within stringent cost, lifetime and performance constraints. The desired technology flight qualification date is 1994

    Efficient Optimization of Low-Thrust Spacecraft Trajectories

    Get PDF
    A paper describes a computationally efficient method of optimizing trajectories of spacecraft driven by propulsion systems that generate low thrusts and, hence, must be operated for long times. A common goal in trajectory-optimization problems is to find minimum-time, minimum-fuel, or Pareto-optimal trajectories (here, Pareto-optimality signifies that no other solutions are superior with respect to both flight time and fuel consumption). The present method utilizes genetic and simulated-annealing algorithms to search for globally Pareto-optimal solutions. These algorithms are implemented in parallel form to reduce computation time. These algorithms are coupled with either of two traditional trajectory- design approaches called "direct" and "indirect." In the direct approach, thrust control is discretized in either arc time or arc length, and the resulting discrete thrust vectors are optimized. The indirect approach involves the primer-vector theory (introduced in 1963), in which the thrust control problem is transformed into a co-state control problem and the initial values of the co-state vector are optimized. In application to two example orbit-transfer problems, this method was found to generate solutions comparable to those of other state-of-the-art trajectory-optimization methods while requiring much less computation time

    Evolutionary Computing Methods for Spectral Retrieval

    Get PDF
    A methodology for processing spectral images to retrieve information on underlying physical, chemical, and/or biological phenomena is based on evolutionary and related computational methods implemented in software. In a typical case, the solution (the information that one seeks to retrieve) consists of parameters of a mathematical model that represents one or more of the phenomena of interest. The methodology was developed for the initial purpose of retrieving the desired information from spectral image data acquired by remote-sensing instruments aimed at planets (including the Earth). Examples of information desired in such applications include trace gas concentrations, temperature profiles, surface types, day/night fractions, cloud/aerosol fractions, seasons, and viewing angles. The methodology is also potentially useful for retrieving information on chemical and/or biological hazards in terrestrial settings. In this methodology, one utilizes an iterative process that minimizes a fitness function indicative of the degree of dissimilarity between observed and synthetic spectral and angular data. The evolutionary computing methods that lie at the heart of this process yield a population of solutions (sets of the desired parameters) within an accuracy represented by a fitness-function value specified by the user. The evolutionary computing methods (ECM) used in this methodology are Genetic Algorithms and Simulated Annealing, both of which are well-established optimization techniques and have also been described in previous NASA Tech Briefs articles. These are embedded in a conceptual framework, represented in the architecture of the implementing software, that enables automatic retrieval of spectral and angular data and analysis of the retrieved solutions for uniqueness

    NICMOS Imaging of the HR 4796A Circumstellar Disk

    Get PDF
    We report the first near infrared (NIR) imaging of a circumstellar annular disk around the young (~8 Myr), Vega-like star, HR 4796A. NICMOS coronagraph observations at 1.1 and 1.6 microns reveal a ring-like symmetrical structure peaking in reflected intensity 1.05 arcsec +/- 0.02 arcsec (~ 70 AU) from the central A0V star. The ring geometry, with an inclination of 73.1 deg +/- 1.2 deg and a major axis PA of 26.8 deg +/- 0.6 deg, is in good agreement with recent 12.5 and 20.8 micron observations of a truncated disk (Koerner, et al. 1998). The ring is resolved with a characteristic width of less than 0.26 arcsec (17 AU) and appears abruptly truncated at both the inner and outer edges. The region of the disk-plane inward of ~60 AU appears to be relatively free of scattering material. The integrated flux density of the part of the disk that is visible (greater than 0.65 arcsec from the star) is found to be 7.5 +/- 0.5 mJy and 7.4 +/- 1.2 mJy at 1.1 and 1.6 microns, respectively. Correcting for the unseen area of the ring yields total flux densities of 12.8 +/- 1.0 mJy and 12.5 +/- 2.0 mJy, respectively (Vega magnitudes = 12.92 /+- 0.08 and 12.35 +/-0.18). The NIR luminosity ratio is evaluated from these results and ground-based photometry of the star. At these wavelengths Ldisk(lambda)/L*(lambda) = 1.4 +/- 0.2E-3 and 2.4 +/- 0.5E-3, giving reasonable agreement between the stellar flux scattered in the NIR and that which is absorbed in the visible and re-radiated in the thermal infrared. The somewhat red reflectance of the disk at these wavelengths implies mean particle sizes in excess of several microns, larger than typical interstellar grains. The confinement of material to a relatively narrow annular zone implies dynamical constraints on the disk particles by one or more as yet unseen bodies.Comment: 14 pages, 1 figure for associated gif file see: http://nicmosis.as.arizona.edu:8000/AAS99/FIGURE1_HR4796A_ApJL.gif . Accepted 13 January 1999, Astrophyical Journal Letter
    corecore