76 research outputs found

    EHMTI-0026. Neuroprolotherapy and acupuncture for clinical trial of acute and chronic migraine treatment

    Get PDF
    Nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic ADP-ribose (cADPR) are Ca2+-mobilizing messengers important for modulating cardiac excitation–contraction coupling and pathophysiology. CD38, which belongs to the ADP-ribosyl cyclase family, catalyzes synthesis of both NAADP and cADPR in vitro. However, it remains unclear whether this is the main enzyme for their production under physiological conditions. Here we show that membrane fractions from WT but not CD38−/− mouse hearts supported NAADP and cADPR synthesis. Membrane permeabilization of cardiac myocytes with saponin and/or Triton X-100 increased NAADP synthesis, indicating that intracellular CD38 contributes to NAADP production. The permeabilization also permitted immunostaining of CD38, with a striated pattern in WT myocytes, whereas CD38−/− myocytes and nonpermeabilized WT myocytes showed little or no staining, without striation. A component of β-adrenoreceptor signaling in the heart involves NAADP and lysosomes. Accordingly, in the presence of isoproterenol, Ca2+ transients and contraction amplitudes were smaller in CD38−/− myocytes than in the WT. In addition, suppressing lysosomal function with bafilomycin A1 reduced the isoproterenol-induced increase in Ca2+ transients in cardiac myocytes from WT but not CD38−/− mice. Whole hearts isolated from CD38−/− mice and exposed to isoproterenol showed reduced arrhythmias. SAN4825, an ADP-ribosyl cyclase inhibitor that reduces cADPR and NAADP synthesis in mouse membrane fractions, was shown to bind to CD38 in docking simulations and reduced the isoproterenol-induced arrhythmias in WT hearts. These observations support generation of NAADP and cADPR by intracellular CD38, which contributes to effects of β-adrenoreceptor stimulation to increase both Ca2+ transients and the tendency to disturb heart rhythm

    Protein kinase C enhances the rapidly activating delayed rectifier potassium current, IKr, through a reduction in C-type inactivation in guinea-pig ventricular myocytes.

    No full text
    1. The rapidly activating delayed rectifier potassium current, IKr, was studied in guinea-pig ventricular myocytes in the presence of thiopentone, which blocks the more slowly activating component of the delayed rectifier potassium current, IKs, and using whole cell perforated patch clamp or switched voltage clamp with sharp electrodes to minimise intracellular dialysis. 2. Activation of protein kinase A (PKA) by isoprenaline or forskolin caused an increase in IKr tail currents. Following a 300 ms depolarising step to +20 mV, mean tail current amplitude was increased 47 +/- 12% by isoprenaline, and 73 +/- 13% by forskolin. No increase in IKr was observed when IKr was studied using whole cell ruptured patch clamp and there was no change in the reversal potential of IKr in the presence of isoprenaline. 3. The rectification of the current sensitive to E4031, a selective IKr blocker, was markedly reduced in the presence of isoprenaline and the region of negative slope was absent. This is consistent with a reduction in the inactivation of IKr and was supported by the finding that IKr, in the presence of isoprenaline, was somewhat less sensitive to block. E4031 (5 microM) blocked only 81 +/- 5% of IKr in the presence of isoprenaline compared to 100 +/- 0% in control. 4. The forskolin- and isoprenaline-induced increases in IKr were inhibited by staurosporine and by the selective protein kinase C (PKC) inhibitor bisindolymaleimide I. Direct activation of PKC by phorbol dibutyrate increased IKr tail currents by 24 +/- 5%. Both the isoprenaline- and forskolin-induced increases in IKr were inhibited when calcium entry was reduced by block of ICa with nifedipine or when myocytes were pre-incubated in BAPTA-AM. 5. The selective PKA inhibitor KT5720 prevented the isoprenaline-induced increase in IKr only when the increase in ICa was also suppressed. 6. These data show a novel mechanism of regulation of IKr by PKC and this kinase was activated by beta-adrenoceptor stimulation. IKr seems to be enhanced through a reduction in the C-type inactivation which underlies the rectification of the channel and such a mechanism may occur in other channels with this type of inactivation

    Cytosolic calcium ions exert a major influence on the firing rate and maintenance of pacemaker activity in guinea-pig sinus node.

    Get PDF
    The sino-atrial node (SAN) provides the electrical stimulus to initiate every heart beat. Cellular processes underlying this activity have been debated extensively, especially with regards to the role of intracellular calcium. We have used whole-cell application of 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), a rapid calcium chelator, to guinea pig isolated SAN myocytes to assess the effect of rapid reduction of intracellular calcium on SAN cell electrical activity. High-dose (10 mM) BAPTA induced rapid and complete cessation of rhythmic action potential (AP) firing (time to cessation 5.5 ± 1.7 s). Over a range of concentrations, BAPTA induced slowing of action potential firing and disruption of rhythmic activity, which was dose-dependent in its time of onset. Exposure to BAPTA was associated with stereotyped action potential changes similar to those previously reported in the presence of ryanodine, namely depolarization of the most negative diastolic potential, prolongation of action potentials and a reduction in action potential amplitude. These experiments are consistent with the view that cytosolic calcium is essential to the maintenance of rhythmic pacemaker activity

    The importance of Ca(2+)-dependent mechanisms for the initiation of the heartbeat.

    No full text
    Mechanisms underlying pacemaker activity in the sinus node remain controversial, with some ascribing a dominant role to timing events in the surface membrane ("membrane clock") and others to uptake and release of calcium from the sarcoplasmic reticulum (SR) ("calcium clock"). Here we discuss recent evidence on mechanisms underlying pacemaker activity with a particular emphasis on the many roles of calcium. There are particular areas of controversy concerning the contribution of calcium spark-like events and the importance of I(f) to spontaneous diastolic depolarisation, though it will be suggested that neither of these is essential for pacemaking. Sodium-calcium exchange (NCX) is most often considered in the context of mediating membrane depolarisation after spark-like events. We present evidence for a broader role of this electrogenic exchanger which need not always depend upon these spark-like events. Short (milliseconds or seconds) and long (minutes) term influences of calcium are discussed including direct regulation of ion channels and NCX, and control of the activity of calcium-dependent enzymes (including CaMKII, AC1, and AC8). The balance between the many contributory factors to pacemaker activity may well alter with experimental and clinical conditions, and potentially redundant mechanisms are desirable to ensure the regular spontaneous heart rate that is essential for life. This review presents evidence that calcium is central to the normal control of pacemaking across a range of temporal scales and seeks to broaden the accepted description of the "calcium clock" to cover these important influences

    Ca(2+)-stimulated adenylyl cyclases regulate the L-type Ca(2+) current in guinea-pig atrial myocytes.

    No full text
    Ca(2+)-stimulated adenylyl cyclases (ACs) have recently been shown to play important roles in pacemaking in the sino-atrial node. Here we present evidence that Ca(2+)-stimulated ACs are functionally active in guinea-pig atrial myocytes. Basal activity of an AC in isolated atrial myocytes was demonstrated by the observations that MDL 12,330A (10 μm), an AC inhibitor, reduced L-type Ca(2+) current (I(CaL)) amplitude, while inhibition of phosphodiesterases with IBMX (100 μm) increased I(CaL) amplitude. Buffering of cytosolic Ca(2+) by exposure of myocytes to BAPTA-AM (5 μm) reduced I(CaL) amplitude, as did inhibition of Ca(2+) release from the sarcoplasmic reticulum with ryanodine (2 μm) and thapsigargin (1 μm). [Ca(2+)]i-activated calmodulin kinase II (CaMKII) inhibition with KN-93 (1 μm) reduced I(CaL), but subsequent application of BAPTA-AM further reduced I(CaL). This effect of BAPTA-AM, in the presence of CaMKII inhibition, demonstrates that there is an additional Ca(2+)-modulated pathway (not dependent on CaMKII) that regulates I(CaL) in atrial myocytes. The effects of BAPTA could be reversed by forskolin (10 μm), a direct stimulator of all AC isoforms, which would restore cAMP levels. In the presence of BAPTA-AM, the actions of IBMX were reduced. In addition, inclusion of cAMP in the patch electrode in the whole-cell configuration prevented the effects of BAPTA. These effects are all consistent with a role for Ca(2+)-stimulated AC in the regulation of atrial myocyte I(CaL)

    Actions of arachidonic acid on contractions and associated electrical activity in guinea-pig isolated ventricular myocytes.

    No full text
    The actions of arachidonic acid (AA) were investigated in guinea-pig isolated ventricular myocytes. Exposure of myocytes to 10 microM AA reduced the amplitude of contractions and calcium transients accompanying action potentials at a frequency of 1 Hz. AA (10 microM) also reduced the amplitude of calcium currents recorded under voltage-clamp conditions. The suppression of contraction by AA was not prevented by either 10 microM trihydroindomethicin (to inhibit cyclo-oxygenase) or 10 microM ETYA (5,8,11,14-eicosatetraynoic acid, to inhibit AA metabolising enzymes), showing that the actions of AA appeared not to be mediated by these metabolites. The reduction of contraction by 10 microM AA was also not prevented by the protein kinase C inhibitor, Ro31-8220 (1 microM), showing that this pathway appeared not to be required for the observed effect. Direct effects of AA may be involved. A further action of 10 microM AA was to suppress spontaneous electrical activity induced by either the beta-adrenergic agonist isoprenaline or the Na(+) pump inhibitor, ouabain. This effect of AA on spontaneous activity might be associated with the observed reduction of calcium entry through L-type calcium channels, although additional effects of AA on calcium release from the sarcoplasmic reticulum might also be involved. Experimental Physiology (2001) 86.4, 437-449

    Inotropic actions of protein kinase C activation by phorbol dibutyrate in guinea-pig isolated ventricular myocytes.

    No full text
    The mechanisms which underlie the inotropic actions of phorbol dibutyrate (PDBu), a synthetic compound which can directly activate protein kinase C (PKC), were investigated in guinea-pig isolated ventricular myocytes. Exposure of cells to PDBu (10(-7) M) reduced myocyte contraction amplitude to 46 +/- 3% of control (n = 8; P 0.05). In contrast, delayed rectifier potassium currents (I(K)) were enhanced to 154 +/- 8% of control (n = 7; P < 0.05) by 10(-7) M PDBu. This enhancement of I(K) may contribute to the observed shortening in action potential duration observed following exposure to PDBu under the conditions of our experiments. When the action potential configuration was maintained throughout the experiment by applying a voltage-clamp waveform, 10(-7) M PDBu still reduced contraction amplitude to 57 +/- 3% of control (P < 0.05). Exposure to 10(-7) M PDBu also suppressed spontaneous activity (both spontaneous potential fluctuations induced by the beta-adrenergic agonist isoprenaline (40 nM), and transient inward currents induced by the cardiac glycoside ouabain (1 microM) under voltage clamp). It therefore appears that the reduction in myocyte contraction amplitude induced by exposure to PDBu may result in part through mechanisms independent of action potential shortening, which may include direct actions of protein kinase C on the function of the sarcoplasmic reticulum (SR) calcium store and/or on contractile proteins (though action potential shortening would be expected to cause a further decrease as a consequence of reduced calcium loading of the SR). The reduction of spontaneous activity caused by PDBu may also result from changes in the function of the SR store mediated by protein kinase C
    • …
    corecore