15 research outputs found

    Dissemination of ultra-stable optical frequencies over commercial fiber networks

    Get PDF
    [no abstract

    Broadband quantum-dot frequency-modulated comb laser

    Full text link
    Frequency-modulated (FM) laser combs, which offer a periodic quasi-continuous-wave output and a flat-topped optical spectrum, are emerging as a promising solution for wavelength-division multiplexing applications, precision metrology, and ultrafast optical ranging. The generation of FM combs relies on spatial hole burning, group velocity dispersion (GVD), Kerr nonlinearity, and four-wave mixing (FWM). While FM combs have been widely observed in quantum cascade Fabry-Perot (FP) lasers, the requirement for a low-dispersion FP cavity can be a challenge in platforms where the waveguide dispersion is mainly determined by the material. Here we report a 60 GHz quantum-dot (QD) mode-locked laser in which both the amplitude-modulated (AM) and the FM comb can be generated independently. The high FWM efficiency of -5 dB allows the QD laser to generate an FM comb efficiently. We also demonstrate that the Kerr nonlinearity can be practically engineered to improve the FM comb bandwidth without the need for GVD engineering. The maximum 3-dB bandwidth that our QD platform can deliver is as large as 2.2 THz. This study gives novel insights into the improvement of FM combs and paves the way for small-footprint, electrically-pumped, and energy-efficient frequency combs for silicon photonic integrated circuits (PICs)

    Subspace tracking for independent phase noise source separation in frequency combs

    Full text link
    Advanced digital signal processing techniques in combination with ultra-wideband balanced coherent detection have enabled a new generation of ultra-high speed fiber-optic communication systems, by moving most of the processing functionalities into digital domain. In this paper, we demonstrate how digital signal processing techniques, in combination with ultra-wideband balanced coherent detection can enable optical frequency comb noise characterization techniques with novel functionalities. We propose a measurement method based on subspace tracking, in combination with multi-heterodyne coherent detection, for independent phase noise sources identification, separation and measurement. Our proposed measurement technique offers several benefits. First, it enables the separation of the total phase noise associated with a particular comb-line or -lines into multiple independent phase noise terms associated with different noise sources. Second, it facilitates the determination of the scaling of each independent phase noise term with comb-line number. Our measurement technique can be used to: identify the most dominant source of phase noise; gain a better understanding of the physics behind the phase noise accumulation process; and confirm, already existing, and enable better phase noise models. In general, our measurement technique provides new insights into noise behavior of optical frequency combs

    Toward On-Chip MEMS-Based Optical Autocorrelator

    No full text
    corecore