24 research outputs found

    Amorphous Al-Ti Powders Prepared by Mechanical Alloying and Consolidated by Electrical Resistance Sintering

    Get PDF
    A novel processing method for amorphous Al50Ti50 alloy, obtained by mechanical alloying and subsequently consolidated by electrical resistance sintering, has been investigated. The characterisation of the powders and the confirmation of the presence of amorphous phase have been carried out by laser diffraction, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry and transmission electron microscopy. The amorphous Al50Ti50 powders, milled for 75 h, have a high hardness and small plastic deformation capacity, not being possible to achieve green compacts for conventional sintering. Moreover, conventional sintering takes a long time, being not possible to avoid crystallisation. Amorphous powders have been consolidated by electrical resistance sintering. Electrically sintered compacts with different current intensities (7–8 kA) and processing times (0.8–1.6 s) show a porosity between 16.5 and 20%. The highest Vickers hardness of 662 HV is reached in the centre of an electrically sintered compact with 8 kA and 1.2 s from amorphous Al50Ti50 powder. The hardness results are compared with the values found in the literature.Ministerio de Economía y Competitividad (Spain) / Feder (EU) DPI2015-69550-C2-1-PMinisterio de Economía y Competitividad (Spain) / Feder (EU) DPI2015-69550-C2-2-

    Medium-frequency electrical resistance sintering of oxidized C.P. iron powder

    Get PDF
    Commercially pure (C.P.) iron powders with a deliberate high degree of oxidation were consolidated by medium-frequency electrical resistance sintering (MF-ERS). This is a consolidation technique where pressure, and heat coming from a low-voltage and high-intensity electrical current, are simultaneously applied to a powder mass. In this work, the achieved densification rate is interpreted according to a qualitative microscopic model, based on the compacts global porosity and electrical resistance evolution. The effect of current intensity and sintering time on compacts was studied on the basis of micrographs revealing the porosity distribution inside the sintered compact. The microstructural characteristics of compacts consolidated by the traditional cold-press and furnace-sinter powder metallurgy route are compared with results of MF-ERS consolidation. The goodness of MF-ERS versus the problems of conventional sintering when working with oxidized powders is analyzed. The electrical consolidation can obtain higher densifications than the traditional route under non-reducing atmospheres.Ministerio de Economía y Competitividad DPI2015-69550-C2-1-PMinisterio de Economía y Competitividad DPI2015-69550-C2-2-

    Magnetic properties of iron powder sintered by medium-frequency electrical resistance sintering

    Get PDF
    Medium-frequency electrical resistance sintering (MF-ERS) is a technique that uses the application of pressure and heat, heat coming from the Joule effect, simultaneously to metallic powders. In this study, this technique consolidates commercial iron powders, and the porosity distribution and hysteresis curves of the compacts were analysed. Compact consolidated by conventional powder metallurgy (PM) was compared with the results obtained

    Nickel Porous Compacts Obtained by Medium-Frequency Electrical Resistance Sintering

    Get PDF
    A commercially pure (c.p.) nickel powder was consolidated by Medium-Frequency Electrical Resistance Sintering (MF-ERS). In this consolidation technique, a pressure and the heat released by a high-intensity and low-voltage electrical current are concurrently applied to a metal powder mass. A nickel powder with a high tap porosity (86%) and a low applied pressure (only 100 MPa) is chosen in order to be able to obtain compacts with different levels of porosity, to facilitate the study of the porosity influence on the compact properties. The influence of current intensity and heating time on the global porosity values, the porosity and microhardness distribution, and the electrical conductivity of the sintered compacts is studied. The properties of the compacts consolidated by MF-ERS are compared with the results obtained by the conventional powder metallurgy route, consisting of cold pressing and furnace sintering. A universal equation to describe the porosity influence on all the analyzed properties of powder aggregates and sintered compacts is proposed and validated

    Consolidation of iron powder by electrical discharge

    Get PDF
    Capacitor electrical discharge consolidation (CEDC) is a technique that uses the heat of the Joule effect of a high intensity electric current to consolidate powders. In this study, the effect of the precompaction pressure and the number of discharges on the porosity, microstructure and hardness of the compacts is analysed. Furthermore, the sintering results of iron powders obtained through the conventional route (cold pressing and furnace sintering) and by CEDC are compared. Experiments show that at low initial pressures the powder column has the necessary resistance to produce the joule heat necessary for powder consolidation. At an initial pressure of 200 MPa the porosity of the specimens decreases from 0.32 to 0.24, and the Vickers microhardness increases from HV10 29 to HV10 51 after 50 discharges.The authors also wish to thank the technicians M. Sánchez (University of Seville, Spain), C. Cantero and C. Lara (University of Huelva, Spain) for experimental assistance. This research was funded by University of Seville Research Funding Programme (project code 2020/00000647). Funding for open access charge: Universidad de Huelva / CBU

    Amorfización de aleación Ti40 CU60 mediante molienda mecánica

    Get PDF
    En los últimos 10 años, las aleaciones cristalinas de Ti-Cu han sido estudiadas intensivamente por sus buenas propiedades mecánicas y protección contra corrosión. Una de las posibilidades para mejorar aún más estas propiedades es fabricar aleaciones de Ti-Cu amorfas. El objetivo del presente trabajo fue fabricar aleaciones amorfas Ti60 Cu40 mediante molienda mecánica (MA). La microestructura y la posible formación de la fase amorfa se caracterizaron mediante granulometría por difracción láser, microscopía electrónica de barrido (SEM), microscopía electrónica de transmisión (TEM) y difracción de rayos X (XRD). La aleación Ti60 Cu40 se obtuvo en estado amorfo después de 60 h de molienda.In the last 10 years, the crystalline alloys of Ti-Cu have been studied intensively for their good mechanical properties and good protection against corrosion. One of the possibilities to further improve these properties is to fabricate amorphous Ti-Cu alloys. The objective of the present work was to prepare amorphous alloys Ti60Cu40 by mechanical alloying (MA). The microstructure and the possible formation of the amorphous phase were characterized by laser diffraction granulometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The alloy Ti60Cu40 was obtained in an amorphous state after 60 h of milling.MINECO (España)/FEDER (UE) DPI2015-69550-C2-1-PMINECO (España)/FEDER (UE) DPI2015-69550-C2-2-

    Medium-Frequency Electrical Resistance Sintering of Soft Magnetic Powder Metallurgy Iron Parts

    Get PDF
    The fabrication of soft magnetic Fe parts by the medium-frequency electrical resistance sintering (MF-ERS) technique is studied in this paper. This consolidation technique involves the simultaneous application to metallic powders of pressure and heat, the latter coming from the Joule effect of a low-voltage and high-intensity electric current. Commercially pure iron powder was used in the consolidation experiences. The porosity distribution, microhardness, electrical resistivity and hysteresis curves of the final compacts were determined and analysed. The results obtained were compared both with those of compacts consolidated by the conventional powder metallurgy (PM) route of cold pressing and vacuum furnace sintering, and with fully dense compacts obtained by double cycle of cold pressing and furnace sintering in hydrogen atmosphereFinancial support of the Ministerio de Economía y Competitividad (Spain) and Feder (EU) through the research projects DPI2015-69550-C2-1-P and DPI2015-69550-C2-2-P is gratefully acknowledged The authors also wish to thank the technicians J. Pinto, M. Madrid and M. Sánchez (University of Seville, Spain) for experimental assistanc

    Low-Voltage Capacitor Electrical Discharge Consolidation of Iron Powder

    Get PDF
    Commercially pure iron powder has been processed by the capacitor electrical discharge consolidation technique. This consolidation technique applies an external pressure and, at the same time, heats a metallic powder mass by the Joule effect of a high-voltage and high-intensity electric current. In this work, a capacitor charged at low voltage has been used instead. The effect of the initial porosity of the Fe powder mass, i.e., of the precompaction pressure, and the number of discharges from the capacitor have been studied. The densification and remaining porosity, the sintering level, the Vickers microhardness, and the electrical resistivity of the sintered compacts have been studied. Compacts sintered by the conventional powder metallurgy route of cold pressing and furnace sintering were also prepared for comparison. Results show that a high initial porosity provides a high electrical resistance in the powder column, a necessary requisite for the Joule effect to increase densification with the number of discharges. Thus, the final porosity decreases to 0.22 after 50 discharges in the powder mass with an initial porosity of 0.30. With this initial porosity, the sintering process increases Vickers microhardness from 29 to 51 HV10 and decreases the electrical resistivity of the powder mass from 3.53 × 10−2 to 5.38 × 10−4 Ω·m. An initial porosity of 0.2 does not make the compacts densify, but a certain bond between particles is attained, increasing microhardness and decreasing electrical resistivity as the number of discharges increases. Lower initial porosities make the powder mass behave as an electrical conductor with no appreciable changes even after 50 electrical dischargesThis research was funded by Junta de Andalucía, grant to the Research Group TEP-971 and the University of Seville Research Funding Program, grant number 2020/0000064

    Influence of Milling Atmosphere on the Controlled Formation of Ultrafine Dispersoids in Al-Based MMCs

    Get PDF
    Properties of compacts made from aluminium powder, milled under different atmospheres, were evaluated. The duration of all the milling processes was 10 h, although different atmospheres were tested: vacuum, confined ammonia, and vacuum combined with a short-time ammonia gas flow (5 min). Milled powders were consolidated by cold uniaxial pressing and vacuum sintering.The nature and content of the second phases change with the milling atmosphere, allowing the modification of the mechanical properties of the compacts. Results showed that hardness and tensile strength were highly dependent on the milling atmosphere. Milling carried out in vacuum with a short-time ammonia gas flow notably improved compacts’ properties, as compared with 10 h vacuum milling. Hardness increased from 96 to 150 HB, and ultimate tensile strength rose from 247 to 476 MPa.Ministerio de Economía y Competitividad DPI2015-69550-C2-1-P DPI2015-69550-C2-2-

    Influence of processing parameters on the conduct of electrical resistance sintering of iron powders

    Get PDF
    The influence of the applied pressure and electrical parameters on the macrostructure of specimens consolidated by the medium-frequency electrical resistance sintering technique (MF-ERS) is analysed in this work. This technique is based on the application of pressure to a mass of conductive powder that, simultaneously, is being crossed by a high intensity and low voltage electric current. The simultaneous action of the pressure and the heat released by the Joule effect causes the densification and consolidation of the powder mass in a very short time. The effect of the current intensity and heating time on the global porosity, the porosity distribution, and the microhardness of sintered compacts is studied for two applied pressures (100 and 150 MPa). For the different experiments of electrical consolidation, a commercially available pure iron powder was chosen. For comparison purposes, the properties of the compacts consolidated by MF-ERS are compared with the results obtained by the conventional powder metallurgy route (cold pressing and furnace sintering). Results show that, as expected, higher current intensities and dwelling times, as well as higher pressures and the consolidation of compacts with lower aspects ratios, produce denser materials
    corecore