4 research outputs found

    Advances in the Mechanistic Understanding of Iron Oxide Nanoparticles' Radiosensitizing Properties

    Get PDF
    Among the plethora of nanosystems used in the field of theranostics, iron oxide nanoparticles (IONPs) occupy a central place because of their biocompatibility and magnetic properties. In this study, we highlight the radiosensitizing effect of two IONPs formulations (namely 7 nm carboxylated IONPs and PEG(5000)-IONPs) on A549 lung carcinoma cells when exposed to 225 kV X-rays after 6 h, 24 h and 48 h incubation. The hypothesis that nanoparticles exhibit their radiosensitizing effect by weakening cells through the inhibition of detoxification enzymes was evidenced by thioredoxin reductase activity monitoring. In particular, a good correlation between the amplification effect at 2 Gy and the residual activity of thioredoxin reductase was observed, which is consistent with previous observations made for gold nanoparticles (NPs). This emphasizes that NP-induced radiosensitization does not result solely from physical phenomena but also results from biological events

    Peptide‐Conjugated Silver Nanoparticles for the Colorimetric Detection of the Oncoprotein Mdm2 in Human Serum

    No full text
    The development of efficient, reliable, and easy-to-use biosensors allowing early cancer diagnosis is of paramount importance for patients. Herein, we report a biosensor based on silver nanoparticles functionalized by peptide aptamers for the detection of a cancer biomarker, i.e. the Mdm2 protein. Silver nanoparticles (AgNPs) were produced and stabilized with a thin PEGylated-calix[4]arene layer that allows (i) the steric stabilization of the AgNPs and (ii) the covalent conjugation of the peptide aptamers via the formation of an amide bond. These peptide-conjugated AgNPs were then used to detect Mdm2 via a dual trapping strategy that was previously reported with gold nanoparticles (AuNPs). Our results showed that replacing AuNPs by AgNPs allows to improve the detection limit by nearly one order of magnitude, down to 5 nM, while the high selectivity of the system and the stability of the particles provided by the calixarene coating allow the detection of Mdm2 in human serum.info:eu-repo/semantics/publishe

    Functionalized silica nanoplatform as a bimodal contrast agent for MRI and optical imaging

    No full text
    <p>The preparation of an efficient bimodal single probe for magnetic resonance (MRI) and optical imaging (OI) is reported. Paramagnetic properties have been obtained by the non-covalent encapsulation of the clinically used Gd3+ chelate (i.e., Gd-HP-DO3A) within silica nanoparticles through a water-in-oil microemulsion process. To ensure colloidal stability, the surface of the particles was modified by means of treatment using PEG-silane, and further functionalized photochemically using a diazirine linker bearing carboxylic functions. Optical properties were obtained by the covalent grafting of a near-infrared emitting probe (NIR) on the resulting surface. The confinement of Gd complexes within the permeable matrix resulted in a significant increase in longitudinal relaxivities (>500% at 20 MHz) in comparison with the relaxivities of free chelate, while the post-functionalization process of PEG with fluorescent compounds appeared promising for the derivatization procedure. Several physico-chemical properties attested to the efficient surface modification and confirmed covalent grafting. Preliminary imaging experiments complete this study and confirm the potential of the presented system for preclinical imaging experiments.</p&gt

    Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy

    No full text
    Despite significant advances in cancer therapy over the years, its complex pathological process still represents a major health challenge when seeking effective treatment and improved healthcare. With the advent of nanotechnologies, nanomedicine-based cancer therapy has been widely explored as a promising technology able to handle the requirements of the clinical sector. Superparamagnetic iron oxide nanoparticles (SPION) have been at the forefront of nanotechnology development since the mid-1990s, thanks to their former role as contrast agents for magnetic resonance imaging. Though their use as MRI probes has been discontinued due to an unfavorable cost/benefit ratio, several innovative applications as therapeutic tools have prompted a renewal of interest. The unique characteristics of SPION, i.e., their magnetic properties enabling specific response when submitted to high frequency (magnetic hyperthermia) or low frequency (magneto-mechanical therapy) alternating magnetic field, and their ability to generate reactive oxygen species (either intrinsically or when activated using various stimuli), make them particularly adapted for cancer therapy. This review provides a comprehensive description of the fundamental aspects of SPION formulation and highlights various recent approaches regarding in vivo applications in the field of cancer therapy
    corecore