21 research outputs found

    CD56(+)-T-Cell Responses to Bacterial Superantigens and Immune Recognition of Attenuated Vaccines

    No full text
    Natural killer T (NKT) cells, coexpressing natural killer (NK) and T-cell receptors (TCR), are associated with immunity to viruses, tumors, and parasites. A well-characterized subclass of these NKT cells expresses biased TCR and recognizes glycolipids such as α-galactoceramide, which is found naturally only in marine sponges and presented by the cell surface glycoprotein CD1d. However, a larger number of T cells present in human blood coexpress the NK marker CD56 and unbiased TCR and do not appear to require CD1 for antigen presentation. Observing high frequencies of CD4 and CD8 coreceptor expression in human CD56(+) T cells, we examined the potential role of major histocompatibility complex (MHC) class II molecules in the activation of these cells. Activation of mononuclear cells with bacterial superantigens presented by MHC class II molecules resulted in increased frequency of CD56(+) T cells. Primarily, CD4(+) cells within the CD56(+)-T-cell population responded to the bacterial superantigens, and cytokine expression profiles were Th1-like. Further, increased levels of T cells expressing CD56 were observed in mononuclear cell cultures responding to a Staphylococcus aureus vaccine or tetanus toxoid. Collectively, our data suggest that a significant number of CD56(+) T cells recognize pathogen-associated ligands in association with MHC class II molecules

    Interleukin-15 Increases Vaccine Efficacy through a Mechanism Linked to Dendritic Cell Maturation and Enhanced Antibody Titersâ–¿

    No full text
    Interleukin-15 (IL-15) is generally considered to sustain T-cell memory and to be a growth factor for natural killer cells. Previous data from our laboratory demonstrated that IL-15 is also an important factor for developing human dendritic cells. For this study, we investigated the effects of IL-15 on antibody responses in mice to a recombinant staphylococcal enterotoxin B (SEB) vaccine (STEBVax) in a preclinical model of toxic shock syndrome induced by SEB. We observed that mouse spleen cells treated with IL-15 in ex vivo culture gained a dendritic cell-like phenotype. Administration of IL-15 to mice also resulted in an increased number of mature CD11c+ dendritic cells in mouse spleens. A significant, IL-15 dose-dependent increase in antigen-specific antibody was observed after coadministration with the vaccine and an aluminum-based adjuvant (alhydrogel). Furthermore, the coadministration of IL-15 with STEBVax and alhydrogel also protected mice from lethal toxic shock above the levels that obtained without IL-15. Thus, the vaccine response enhanced by IL-15 appears to be mediated by mature dendritic cells and results in prevalent seroconversion to Th2-dependent antibodies. This suggests a potential use of IL-15 as an adjuvant for antibody-dependent responses to vaccines

    Human Monocytes Infected with Yersinia pestis

    No full text

    Activation of MyD88 signaling upon staphylococcal enterotoxin binding to MHC class II molecules.

    Get PDF
    Ligands binding to Toll-like receptor (TLR), interleukin 1 receptor (IL-1R), or IFN-γR1 are known to trigger MyD88-mediated signaling, which activates pro-inflammatory cytokine responses. Recently we reported that staphylococcal enterotoxins (SEA or SEB), which bind to MHC class II molecules on APCs and cross link T cell receptors, activate MyD88- mediated pro-inflammatory cytokine responses. We also reported that MyD88(-/-) mice were resistant to SE- induced toxic shock and had reduced levels of serum cytokines. In this study, we investigated whether MHC class II- SE interaction by itself is sufficient to activate MyD88 in MHC class II(+) cells and induce downstream pro-inflammatory signaling and production of cytokines such as TNF-α and IL-1β. Here we report that human monocytes treated with SEA, SEB, or anti-MHC class II monoclonal antibodies up regulated MyD88 expression, induced activation of NF-kB, and increased expression of IL-1R1 accessory protein, TNF-α and IL-1β. MyD88 immunoprecipitated from cell extracts after SEB stimulation showed a greater proportion of MyD88 phosphorylation compared to unstimulated cells indicating that MyD88 was a component of intracellular signaling. MyD88 downstream proteins such as IRAK4 and TRAF6 were also up regulated in monocytes after SEB stimulation. In addition to monocytes, primary B cells up regulated MyD88 in response to SEA or SEB stimulation. Importantly, in contrast to primary B cells, MHC class II deficient T2 cells had no change of MyD88 after SEA or SEB stimulation, whereas MHC class II-independent activation of MyD88 was elicited by CpG or LPS. Collectively, these results demonstrate that MHC class II utilizes a MyD88-mediated signaling mechanism when in contact with ligands such as SEs to induce pro-inflammatory cytokines

    HLA and HIV-1: Heterozygote Advantage and B*35-Cw*04 Disadvantage

    No full text
    A selective advantage against infectious disease associated with increased heterozygosity at the human major histocompatibility complex [human leukocyte antigen (HLA) class I and class II] is believed to play a major role in maintaining the extraordinary allelic diversity of these genes. Maximum HLA heterozygosity of class I loci (A, B, and C) delayed acquired immunodeficiency syndrome (AIDS) onset among patients infected with human immunodeficiency virus-type 1 (HIV-1), whereas individuals who were homozygous for one or more loci progressed rapidly to AIDS and death. The HLA class I alleles B*35 and Cw*04 were consistently associated with rapid development of AIDS-defining conditions in Caucasians. The extended survival of 28 to 40 percent of HIV-1-infected Caucasian patients who avoided AIDS for ten or more years can be attributed to their being fully heterozygous at HLA class I loci, to their lacking the AIDS-associated alleles B*35 and Cw*04, or to both
    corecore