8 research outputs found

    Epidemiology of Mycobacterium tuberculosis lineages and strain clustering within urban and peri-urban settings in Ethiopia

    Get PDF
    Background Previous work has shown differential predominance of certain Mycobacterium tuberculosis (M. tb) lineages and sub-lineages among different human populations in diverse geographic regions of Ethiopia. Nevertheless, how strain diversity is evolving under the ongoing rapid socio-economic and environmental changes is poorly understood. The present study investigated factors associated with M. tb lineage predominance and rate of strain clustering within urban and peri-urban settings in Ethiopia. Methods Pulmonary Tuberculosis (PTB) and Cervical tuberculous lymphadenitis (TBLN) patients who visited selected health facilities were recruited in the years of 2016 and 2017. A total of 258 M. tb isolates identified from 163 sputa and 95 fine-needle aspirates (FNA) were characterized by spoligotyping and compared with international M.tb spoligotyping patterns registered at the SITVIT2 databases. The molecular data were linked with clinical and demographic data of the patients for further statistical analysis. Results From a total of 258 M. tb isolates, 84 distinct spoligotype patterns that included 58 known Shared International Type (SIT) patterns and 26 new or orphan patterns were identified. The majority of strains belonged to two major M. tb lineages, L3 (35.7%) and L4 (61.6%). The observed high percentage of isolates with shared patterns (n = 200/258) suggested a substantial rate of overall clustering (77.5%). After adjusting for the effect of geographical variations, clustering rate was significantly lower among individuals co-infected with HIV and other concomitant chronic disease. Compared to L4, the adjusted odds ratio and 95% confidence interval (AOR; 95% CI) indicated that infections with L3 M. tb strains were more likely to be associated with TBLN [3.47 (1.45, 8.29)] and TB-HIV co-infection [2.84 (1.61, 5.55)]. Conclusion Despite the observed difference in strain diversity and geographical distribution of M. tb lineages, compared to earlier studies in Ethiopia, the overall rate of strain clustering suggests higher transmission and warrant more detailed investigations into the molecular epidemiology of TB and related factors

    Network analysis of dairy cattle movement and associations with bovine tuberculosis spread and control in emerging dairy belts of Ethiopia

    Get PDF
    Background: Dairy cattle movement could be a major risk factor for the spread of bovine tuberculosis (BTB) in emerging dairy belts of Ethiopia. Dairy cattle may be moved between farms over long distances, and hence understanding the route and frequency of the movements is essential to establish the pattern of spread of BTB between farms, which could ultimately help to inform policy makers to design cost effective control strategies. The objective of this study was, therefore, to investigate the network structure of dairy cattle movement and its influence on the transmission and prevalence of BTB in three emerging areas among the Ethiopian dairy belts, namely the cities of Hawassa, Gondar and Mekelle. Methods: A questionnaire survey was conducted in 278 farms to collect data on the pattern of dairy cattle movement for the last 5 years (September 2013 to August 2018). Visualization of the network structure and analysis of the relationship between the network patterns and the prevalence of BTB in these regions were made using social network analysis. Results: The cattle movement network structure display both scale free and small world properties implying local clustering with fewer farms being highly connected, at higher risk of infection, with the potential to act as super spreaders of BTB if infected. Farms having a history of cattle movements onto the herds were more likely to be affected by BTB (OR: 2.2) compared to farms not having a link history. Euclidean distance between farms and the batch size of animals moved on were positively correlated with prevalence of BTB. On the other hand, farms having one or more outgoing cattle showed a decrease on the likelihood of BTB infection (OR = 0.57) compared to farms which maintained their cattle. Conclusion: This study showed that the patterns of cattle movement and size of animal moved between farms contributed to the potential for BTB transmission. The few farms with the bulk of transmission potential could be efficiently targeted by control measures aimed at reducing the spread of BTB. The network structure described can also provide the starting point to build and estimate dynamic transmission models for BTB, and other infectious disease

    Zoonotic tuberculosis in a high bovine tuberculosis burden area of Ethiopia

    Get PDF
    BackgroundTuberculosis (TB) is a major cause of ill health and one of the leading causes of death worldwide, caused by species of the Mycobacterium tuberculosis complex (MTBC), with Mycobacterium tuberculosis being the dominant pathogen in humans and Mycobacterium bovis in cattle. Zoonotic transmission of TB (zTB) to humans is frequent particularly where TB prevalence is high in cattle. In this study, we explored the prevalence of zTB in central Ethiopia, an area highly affected by bovine TB (bTB) in cattle.MethodA convenient sample of 385 patients with pulmonary tuberculosis (PTB, N = 287) and tuberculous lymphadenitis (TBLN, N = 98) were included in this cross-sectional study in central Ethiopia. Sputum and fine needle aspirate (FNA) samples were obtained from patients with PTB and TBLN, respectively, and cultures were performed using BACTEC™ MGIT™ 960. All culture positive samples were subjected to quantitative PCR (qPCR) assays, targeting IS1081, RD9 and RD4 genomic regions for detection of MTBC, M. tuberculosis and M. bovis, respectively.ResultsTwo hundred and fifty-five out of 385 sampled patients were culture positive and all were isolates identified as MTBC by being positive for the IS1081 assay. Among them, 249 (97.6%) samples had also a positive RD9 result (intact RD9 locus) and were consequently classified as M. tuberculosis. The remaining six (2.4%) isolates were RD4 deficient and thereby classified as M. bovis. Five out of these six M. bovis strains originated from PTB patients whereas one was isolated from a TBLN patient. Occupational risk and the widespread consumption of raw animal products were identified as potential sources of M. bovis infection in humans, and the isolation of M. bovis from PTB patients suggests the possibility of human-to-human transmission, particularly in patients with no known contact history with animals.ConclusionThe detected proportion of culture positive cases of 2.4% being M. bovis from this region was higher zTB rate than previously reported for the general population of Ethiopia. Patients with M. bovis infection are more likely to get less efficient TB treatment because M. bovis is inherently resistant to pyrazinamide. MTBC species identification should be performed where M. bovis is common in cattle, especially in patients who have a history of recurrence or treatment failure

    Prevalence of bovine tuberculosis and its associated risk factors in the emerging dairy belts of regional cities in Ethiopia

    Get PDF
    Bovine tuberculosis (BTB) has become an economically important disease in dairy herds found in and around Addis Ababa City and is emerging in regional cities like Gondar, Hawassa and Mekelle because of the establishment of dairy farms in the milk sheds of these cities. A cross-sectional study to estimate the prevalence of BTB and identify associated risk factors was conducted between February 2016 and March 2017. A total of 174 herds comprising of 2,754 dairy cattle in the cities of Gondar, Hawassa and Mekelle were tested using the Single Intradermal Comparative Cervical Tuberculin (SICCT) test. Data on herd structure, animal origin, body condition, housing condition, farm hygiene, management and biosecurity practices were collected using a pre-tested structured questionnaire. Generalized Linear Models (GLM) and Generalized Linear Mixed Models (GLMM) were used to analyze the herd and animal level risk factors, respectively. The herd prevalence was 22.4% (95% CI: 17–29%) while the animal prevalence was 5.2% (95% CI: 4–6%) at the cut-off >4 mm. The herd prevalence rose to 65.5% (95% CI: 58–72%) and the animal prevalence rose to 9% (95% CI: 8–10%) when the severe interpretation of >2 mm cut-off was applied. The mean within-herd prevalence in positive farms at the cut-off >4 mm was 22.7% (95% CI: 15–31%). At the herd level, the analysis showed that herd size, farm hygiene, feeding condition and biosecurity were significantly associated with BTB status, while new cattle introductions showed only borderline significance and that age of farm, housing condition, farmers’ educational status and animal health care practice were not significant. At the animal level, the results showed that age and animal origin were identified as significant predictors for BTB positivity but sex and body condition score were not related to BTB status. Descriptive analysis revealed that herds having ‘BTB history’ showed slightly higher likelihood of being BTB positive compared to farms having no previous BTB exposure. In conclusion, this study showed relatively lower average prevalence in the emerging dairy regions as compared to the prevalence observed in and around Addis Ababa City, warranting for implementation of control program at this stage to reduce or possibly stop further transmission of BTB

    Spoligotype analysis of Mycobacterium bovis isolates from cattle and assessment of zoonotic TB transmission among individuals working in bovine TB-infected dairy farms in Ethiopia.

    Get PDF
    Funder: ETHICOBOTSBovine tuberculosis (bTB) is a disease with impact on dairy productivity, as well as having the potential for zoonotic transmission. Understanding the genetic diversity of the disease agent Mycobacterium bovis is important for identifying its routes of transmission. Here we investigated the level of genetic diversity of M. bovis isolates and assessed the zoonotic potential in risk groups of people working in bTB-infected dairy farms in central Ethiopia. M. bovis was isolated and spoligotyped from tissue lesions collected from slaughtered cattle as well as from raw milk collected from bTB positive cows in dairy farms from six urban areas of central Ethiopia. From consented dairy farm workers, knowledge and practices related to zoonotic TB transmission, together with demographic and clinical information, was collected through interviews. Sputum or Fine Needle Aspirate (FNA) samples were collected from suspected TB cases. Spoligotyping of 55 M. bovis isolates that originated either from cattle tissues with tuberculous lesion or from raw milk revealed seven spoligotype patterns where SB1176 was the most prevalent type (47.3%). Most isolates (89.1%) were of the M. bovis African 2 clonal complex. All sputum and FNA samples from 41 dairy farm workers with symptoms of TB were culture negative for any mycobacteria. Among the 41 TB suspected farm workers, 61% did not know about bTB in cattle and its zoonotic potential, and over two-third of these workers practiced raw milk consumption. Our spoligotype analysis suggests a wider transmission of a single spoligotype in the study area. The results reported here may be useful in guiding future work to identify the source and direction of bTB transmission and hence design of a control strategy. Isolation of M. bovis from milk, knowledge gap on zoonotic TB and practice of consumption of raw milk in the study population showed potential risk for zoonotic transmission
    corecore