54 research outputs found
Synthesis of Polyhydroxyalkanoates (PHAs) from vegetable oils and free fatty acids by wild-type and mutant strains of Pseudomonas chlororaphis.
Pseudomonas chlororaphis strain PA23 was isolated from soybean roots as a plant growth-promoting rhizobacterium (PGPR) and secretes a wide-range of compounds, including the antibiotics phenazine-1-caroxymide (PCA), pyrrolnitrin, and 2-hydroxyphenazine. We have determined that P. chlororaphis PA23 can synthesize medium chain length polyhydroxyalkanoate (PHA) polymers utilizing free fatty acids, such as octanoic acid and nonanoic acid, as well as vegetable oils as sole carbon sources. Genome analysis identified a pha operon containing 7 genes in P. chlororaphis PA23 which were highly conserved. A non-pigmented strain that does not synthesize PCA, P. chlororaphis PA23-63, was also studied for PHA production. P. chlororaphis PA23-63 produced 2.42 - 5.14 g/L cell biomass and accumulated PHAs from 11.7 - 32.5% of cdw when cultured with octanoic acid, nonanoic acid, fresh canola oil, waste canola fryer oil, or biodiesel-derived waste free fatty acids under batch culture conditions. The subunit composition of the PHAs produced from fresh canola oil, waste canola fryer oil, or biodiesel-derived free fatty acids did not differ significantly. Addition of octanoic acid and nonanoic acid to canola oil cultures increased PHA production, but addition of glucose did not. PHA production in the phz- mutant, P. chlororaphis PA23-63, was greater than the parent strain.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
RsaL, a Novel Repressor of Virulence Gene Expression in Pseudomonas aeruginosa
As components of a Pseudomonas aeruginosa quorum-sensing system, LasR and PAI-1 globally regulate expression of multiple virulence determinants, as well as the second P. aeruginosa quorum-sensing system. To date, no information exists on negative regulation of the quorum-sensing cascade in P. aeruginosa. Here we describe a novel gene, rsaL, which is located downstream from lasR and transcribed antisense relative to lasR. In P. aeruginosa, overexpression of rsaL results in reduced lasB expression and decreased elastase activity. With the use of a six-His protein fusion system, we demonstrate that rsaL encodes an 11-kDa protein. Direct quantitation of PAI-1 levels in cultures and studies utilizing Escherichia coli lambda lysogens carrying lacZ transcriptional fusions reveal that RsaL specifically represses transcription of the PAI-1 autoinducer synthase gene, lasI. RsaL’s repressive effect on lasI and the associated decrease in elastase activity have important implications for the expression of all LasR–PAI-1-dependent virulence genes and the overall pathogenicity of P. aeruginosa
The effect of polyhydroxyalkanoates (PHA) in Pseudomonas chlororaphis PA23 biofilm formation, stress endurance and interaction with the protozoan predator Acanthamoeba castellanii
Pseudomonas chlororaphis PA23 is a biocontrol agent capable of protecting canola against the fungal pathogen Sclerotinia sclerotiorum. In addition to producing antifungal compounds, this bacterium synthesizes and accumulates polyhydroxyalkanoate (PHA) polymers as carbon and energy storage compounds. Because the role of PHA in PA23 physiology is currently unknown, we investigated the impact of this polymer on stress resistance, adherence to surfaces, and interaction with the protozoan predator Acanthamoeba castellanii (Ac). Three PHA biosynthesis mutants were created, PA23phaC1, PA23phaC1ZC2, and PA23phaC1ZC2D, which accumulated reduced PHA. Our phenotypic assays revealed that PA23phaC1ZC2D produced less phenazine (PHZ) compared to wild type (WT) and the phaC1 and phaC1ZC2 mutants. All three mutants exhibited enhanced sensitivity to UV irradiation, starvation, heat stress, cold stress, and hydrogen peroxide. Moreover, motility, exopolysaccharide production, biofilm formation and root attachment were increased in strains with reduced PHA levels. Interaction studies with the amoeba Ac revealed that the WT, phaC1, and phaC1ZC2 mutants were consumed less than the phaC1ZC2D mutant, likely due to decreased PHZ production by the latter. Collectively these findings indicate that PHA accumulation enhances PA23 resistance to a number of stresses in vitro, which could improve the environmental fitness of this bacterium in hostile environments.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
- …