16 research outputs found
Triterpenoids Display Single Agent Anti-tumor Activity in a Transgenic Mouse Model of Chronic Lymphocytic Leukemia and Small B Cell Lymphoma
The synthetic triterpenoid 2-Cyano-3,12-Dioxooleana-1,9-Dien-28-Oic Acid (CDDO) and derivatives display anti-tumor activity against a variety of cultured tumor cell lines and in mouse xenografts. In this report, we have studied the effects of CDDO and its imidazolide derivative (CDDO-Im) on chronic lymphocytic leukemia (CLL), using patients' CLL cells and a mouse model of CLL and small B cell lymphoma (SBL).CDDO and CDDO-Im efficiently induced apoptosis of malignant human and mouse B-cells ex vivo, although CDDO-Im was over 10-fold more potent than CDDO. Treating mice with CLL/SBL with liposome-formulated CDDO or CDDO-Im resulted in significant reductions of B cells in blood, spleen and lung. CDDO-Im was shown to be more potent than CDDO, while treatment with empty liposomes had no impact on disease. CDDO-Im treatment initially resulted in an increase of circulating B cells, which correlates with a reduction in resident lymphocytes in spleen, and lungs, suggesting that CDDO-Im induces mobilization of tumor cells from lymphoid organs and infiltrated tissues into the circulation. Analysis of blood cells recovered from treated mice also showed that CDDO-Im is a potent inducer of tumor cells death in vivo. Furthermore, CDDO-Im efficiently eradicated mouse CLL/SBL cells but had little effect on the viability of normal B and T cells in vivo.The presented data demonstrate that triterpenoids CDDO and CDDO-Im reduce leukemia and lymphoma burden in vivo in a transgenic mouse model of CLL/SBL, and support the clinical testing of CDDO-based synthetic triterpenoids in patients with CLL
The implementation of a translational study involving a primary care based behavioral program to improve blood pressure control: The HTN-IMPROVE study protocol (01295)
<p>Abstract</p> <p>Background</p> <p>Despite the impact of hypertension and widely accepted target values for blood pressure (BP), interventions to improve BP control have had limited success.</p> <p>Objectives</p> <p>We describe the design of a 'translational' study that examines the implementation, impact, sustainability, and cost of an evidence-based nurse-delivered tailored behavioral self-management intervention to improve BP control as it moves from a research context to healthcare delivery. The study addresses four specific aims: assess the implementation of an evidence-based behavioral self-management intervention to improve BP levels; evaluate the clinical impact of the intervention as it is implemented; assess organizational factors associated with the sustainability of the intervention; and assess the cost of implementing and sustaining the intervention.</p> <p>Methods</p> <p>The project involves three geographically diverse VA intervention facilities and nine control sites. We first conduct an evaluation of barriers and facilitators for implementing the intervention at intervention sites. We examine the impact of the intervention by comparing 12-month pre/post changes in BP control between patients in intervention sites versus patients in the matched control sites. Next, we examine the sustainability of the intervention and organizational factors facilitating or hindering the sustained implementation. Finally, we examine the costs of intervention implementation. Key outcomes are acceptability and costs of the program, as well as changes in BP. Outcomes will be assessed using mixed methods (<it>e.g</it>., qualitative analyses--pattern matching; quantitative methods--linear mixed models).</p> <p>Discussion</p> <p>The study results will provide information about the challenges and costs to implement and sustain the intervention, and what clinical impact can be expected.</p
Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study
Introduction:
The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures.
Methods:
In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025.
Findings:
Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation.
Interpretation:
After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification
ACR TI-RADS: Pitfalls, Solutions, and Future Directions.
The high prevalence of thyroid nodules combined with the generally indolent growth of thyroid cancer present a challenge for optimal patient care. Risk classification models based on US features have been created by multiple professional societies, including the American College of Radiology (ACR), which published the Thyroid Imaging Reporting and Data System (TI-RADS) in 2017. ACR TI-RADS uses a standardized lexicon for assessment of thyroid nodules to generate a numeric scoring of features, designate categories of relative probability of benignity or malignancy, and provide management recommendations, with the aim of reducing unnecessary biopsies and excessive surveillance. Adopting ACR TI-RADS may require practice-level changes involving image acquisition and workflow, interpretation, and reporting. Significant resources should be devoted to educating sonographers and radiologists to accurately recognize features that contribute to the scoring of a nodule. Following a system that uses approved terminology generates reproducible and relevant reports while providing clarity of language and preventing misinterpretation. Comprehensive documentation facilitates quality improvement efforts. It also creates opportunities for outcome data and other performance metrics to be integrated with research. The authors review ACR TI-RADS, describe challenges and potential solutions related to its implementation based on their experiences, and highlight possible future directions in its evolution