3 research outputs found

    Assessment of breath volatile organic compounds in acute cardiorespiratory breathlessness: a protocol describing a prospective real-world observational study

    Get PDF
    Introduction Patients presenting with acute undifferentiated breathlessness are commonly encountered in admissions units across the UK. Existing blood biomarkers have clinical utility in distinguishing patients with single organ pathologies but have poor discriminatory power in multifactorial presentations. Evaluation of volatile organic compounds (VOCs) in exhaled breath offers the potential to develop biomarkers of disease states that underpin acute cardiorespiratory breathlessness, owing to their proximity to the cardiorespiratory system. To date, there has been no systematic evaluation of VOC in acute cardiorespiratory breathlessness. The proposed study will seek to use both offline and online VOC technologies to evaluate the predictive value of VOC in identifying common conditions that present with acute cardiorespiratory breathlessness. Methods and analysis A prospective real-world observational study carried out across three acute admissions units within Leicestershire. Participants with self-reported acute breathlessness, with a confirmed primary diagnosis of either acute heart failure, community-acquired pneumonia and acute exacerbation of asthma or chronic obstructive pulmonary disease will be recruited within 24 hours of admission. Additionally, school-age children admitted with severe asthma will be evaluated. All participants will undergo breath sampling on admission and on recovery following discharge. A range of online technologies including: proton transfer reaction mass spectrometry, gas chromatography ion mobility spectrometry, atmospheric pressure chemical ionisation-mass spectrometry and offline technologies including gas chromatography mass spectroscopy and comprehensive two-dimensional gas chromatography-mass spectrometry will be used for VOC discovery and replication. For offline technologies, a standardised CE-marked breath sampling device (ReCIVA) will be used. All recruited participants will be characterised using existing blood biomarkers including C reactive protein, brain-derived natriuretic peptide, troponin-I and blood eosinophil levels and further evaluated using a range of standardised questionnaires, lung function testing, sputum cell counts and other diagnostic tests pertinent to acute disease. Ethics and dissemination The National Research Ethics Service Committee East Midlands has approved the study protocol (REC number: 16/LO/1747). Integrated Research Approval System (IRAS) 198921. Findings will be presented at academic conferences and published in peer-reviewed scientific journals. Dissemination will be facilitated via a partnership with the East Midlands Academic Health Sciences Network and via interaction with all UK-funded Medical Research Council and Engineering and Physical Sciences Research Council molecular pathology nodes. Trial registration number NCT0367299

    Use of the ReCIVA device in breath sampling of patients with acute breathlessness: a feasibility study

    No full text
    Introduction: Investigating acute multifactorial undifferentiated breathlessness and understanding the driving inflammatory processes can be technically challenging in both adults and children. Being able to validate non-invasive methods such as breath analysis would be a huge clinical advance. The ReCIVA ® device allows breath samples to be collected directly onto sorbent tubes at the bedside for analysis of exhaled volatile organic compounds (eVOCs). We aimed to assess the feasibility of using this device in acutely breathless patients. Methods: Adults hospitalised with acute breathlessness and children aged 5-16 years with acute asthma or chronic stable asthma as well as healthy adult and child volunteers were recruited. Breath samples were collected onto sorbent tubes using the ReCIVA® device and sent for analysis by means of two dimensional gas chromatography-mass spectrometry (GCxGC-MS). The NASA Task Load Index (NASA-TLX) was used to assess the perceived task workload of undertaking sampling from the patients’ perspective. Results: Data was available for 65 adults and 61 children recruited. In total, 98.4% of adults and 75.4% of children were able to provide the full target breath sample using the ReCIVA ® device. NASA TLX measurements was available in the adult population with mean values of 3.37 for effort, 2.34 for frustration, 3.8 for mental demand, 2.8 for performance, 3.9 for physical demand and 2.8 for temporal demand. Discussion: This feasibility study demonstrates it is possible and acceptable to collect breath samples from both adults and children at the bedside for breathomics analysis using the ReCIVA® device

    The variability of volatile organic compounds in the indoor air of clinical environments

    No full text
    The development of clinical breath-analysis is confounded by the variability of background volatile organic compounds (VOC). Reliable interpretation of clinical breath-analysis at individual, and cohort levels requires characterisation of clinical-VOC levels and exposures. Active-sampling with thermal-desorption/gas chromatography-mass spectrometry recorded and evaluated VOC concentrations in 245 samples of indoor air from three sites in a large NHS provider trust in the UK over 27 months. Data deconvolution, alignment and clustering isolated 7344 features attributable to VOC and described the variability (composition and concentration) of respirable clinical VOC. 328 VOC were observed in more than 5% of the samples and 68 VOC appeared in more than 30% of samples. Common VOC were associated with exogenous and endogenous sources and 17 VOC were identified as seasonal differentiators. The presence of metabolites from the anaesthetic sevoflurane, and putative-disease biomarkers in room air, indicated that exhaled VOC were a source of background-pollution in clinical breath-testing activity. With the exception of solvents, and PPE waxes, exhaled VOC concentrations above 3 µg m-3 are unlikely to arise from room air contamination, and in the absence of extensive survey-data, this level could be applied as a threshold for inclusion in studies, removing a potential environmental confounding-factor in developing breath-based diagnostics
    corecore