2,217 research outputs found
Prioritizing circular economy strategies for sustainable PV deployment at the TW scale
Global decarbonization requires an unprecedented scale-up of photovoltaic (PV) manufacturing and deployment. The material demand and eventual end of life management associated with multi-TW scale deployment poses many challenges. Circular Economy (CE) and it's associated R-Actions (Reduce, Reuse, Recycle) have been proposed to mitigate end of life management and material sourcing concerns. However, CE metrics typically focus on a single product and only consider mass, excluding energy flows. This work leverages the PV in Circular Economy (PV ICE) tool to quantify the deployment, mass, and energy impacts of R-Actions and proposed sustainable PV designs in the context of achieving energy transition deployment goals (75 TW in 2050). 13 module scenarios are established and evaluated across 6 capacity, mass and energy metrics to identify tradeoffs and priorities. We find that increasing module efficiency can reduce near-term material demands up to 30% and improve energy metrics by up to 9%. Material circularity (recycling) can minimize lifecycle wastes and reduce material demands at the cost of higher energy demands. Increasing module lifetime, including reliability improvements and reuse strategies, is effective at reducing both material (>10%) and energy demands (24%). Uniquely, lifetime improvements maximize benefits and minimize the harms across all six metrics while achieving multi-TW scale deployment
Structural and chemical characterization of the back contact region in high efficiency CdTe solar cells
Cadmium telluride (CdTe) is the leading
commercialized thin-film photovoltaic technology. Copper is
commonly used in back contacts to obtain high efficiency, but has
also been implicated as a harmful factor for device stability. T hus
it is critical to understand its composition and distribution within
complete devices. In this work the composition and structure of
the back contact region was examined in high efficiency devices
(-16%) contacted using a ZnTe:Cu buffer layer followed by gold
metallization. T he microstructure was examined in the asdeposited
state and after rapid thermal processing (RTP) using
high resolution transmission electron microscopy and EDX
chemical mapping. After RTP the ZnTe exhibits a bilayer
structure with polycrystalline, twinned grains adjacent to Au and
an amorphous region adjacent to CdTe characterized by extensive
Cd-Zn interdiffusion. T he copper that is co-deposited uniformly
within ZnTe is found to segregate dramatically after RTP
activation, either collecting near the ZnTe/Au interface or forming
CUxTe clusters in CdTe at defects or grain boundaries near the
interface with ZnTe. Chlorine, present throughout CdTe and
concentrated at grain boundaries, does not penetrate significantly
into the back contact region during RTP activation
Early Career Perspectives For the NASA SMD Bridge Program
In line with the Astro2020 Decadal Report State of the Profession findings
and the NASA core value of Inclusion, the NASA Science Mission Directorate
(SMD) Bridge Program was created to provide financial and programmatic support
to efforts that work to increase the representation and inclusion of students
from under-represented minorities in the STEM fields. To ensure an effective
program, particularly for those who are often left out of these conversations,
the NASA SMD Bridge Program Workshop was developed as a way to gather feedback
from a diverse group of people about their unique needs and interests. The
Early Career Perspectives Working Group was tasked with examining the current
state of bridge programs, academia in general, and its effect on students and
early career professionals. The working group, comprised of 10 early career and
student members, analyzed the discussions and responses from workshop breakout
sessions and two surveys, as well as their own experiences, to develop specific
recommendations and metrics for implementing a successful and supportive bridge
program. In this white paper, we will discuss the key themes that arose through
our work, and highlight select recommendations for the NASA SMD Bridge Program
to best support students and early career professionals.Comment: White paper developed by the Early Career Perspectives Working Group
for the NASA SMD Bridge Program Workshop. 11 page
Recommended from our members
CUTLL1, a novel human T-cell lymphoma cell line with t(7;9) rearrangement, aberrant NOTCH1 activation and high sensitivity to c-secretase inhibitors
Activating mutations in NOTCH1 are present in over 50% of human T-cell lymphoblastic leukemia (T-ALL) samples and inhibition of NOTCH1 signaling with c-secretase inhibitors (GSI) has emerged as a potential therapeutic strategy for the treatment of this disease. Here, we report a new human T-cell lymphoma line CUTLL1, which expresses high levels of activated NOTCH1 and is extremely sensitive to c-secretase inhibitors treatment. CUTLL1 cells harbor a t(7;9)(q34;q34) translocation which induces the expression of a TCRB-NOTCH1 fusion transcript encoding a membrane-bound truncated form of the NOTCH1 receptor. GSI treatment of CUTLL1 cells blocked NOTCH1 processing and caused rapid clearance of activated intracellular NOTCH1. Loss of NOTCH1 activity induced a gene expression signature characterized by the downregulation of NOTCH1 target genes such as HES1 and NOTCH3. In contrast with most human T-ALL cell lines with activating mutations in NOTCH1, CUTLL1 cells showed a robust cellular phenotype upon GSI treatment characterized by G1 cell cycle arrest and increased apoptosis. These results show that the CUTLL1 cell line has a strong dependence on NOTCH1 signaling for proliferation and survival and supports that T-ALL patients whose tumors harbor t(7;9) should be included in clinical trials testing the therapeutic efficacy NOTCH1 inhibition with GSIs. Leukemia (2006) 20, 1279–1287. doi:10.1038/sj.leu.2404258; published online 11 May 200
Associations of β-Amyloid and Vascular Burden With Rates of Neurodegeneration in Cognitively Normal Members of the 1946 British Birth Cohort
OBJECTIVE: To quantify the independent and interactive associations of amyloid-β (Aβ) and white matter hyperintensity volume (WMHV) - a marker of presumed cerebrovascular disease (CVD) - with rates of neurodegeneration, and to examine the contributions of APOE ε4 and vascular risk measured at different stages of adulthood in cognitively normal members of the 1946 British birth cohort. METHODS: Participants underwent brain MRI and florbetapir-Aβ positron emission tomography as part of Insight 46, an observational population-based study. Changes in whole brain, ventricular and hippocampal volume were directly measured from baseline and repeat volumetric T1 MRI using the Boundary Shift Integral. Linear regression was used to test associations with: baseline Aβ deposition; baseline WMHV; APOE ε4; and office-based Framingham heart study-cardiovascular risk scores (FHS-CVS) and systolic blood pressure (BP) at ages 36, 53 and 69 years. RESULTS: 346 cognitively normal participants (mean [SD] age at baseline scan 70.5 [0.6] years; 48% female) had high-quality T1 MRI data from both time-points (mean [SD] scan interval 2.4 [0.2] years). Being Aβ positive at baseline was associated with 0.87 ml/year faster whole brain atrophy (95% CI 0.03, 1.72), 0.39 ml/year greater ventricular expansion (95% CI 0.16, 0.64) and 0.016 ml/year faster hippocampal atrophy (95% CI 0.004, 0.027), while each 10 ml additional WMHV at baseline was associated with 1.07 ml/year faster whole brain atrophy (95% CI 0.47, 1.67), 0.31 ml/year greater ventricular expansion (95% CI 0.13, 0.60) and 0.014 ml/year faster hippocampal atrophy (95% CI 0.006, 0.022). These contributions were independent and there was no evidence that Aβ and WMHV interacted in their effects. There were no independent associations of APOE ε4 with rates of neurodegeneration after adjusting for Aβ status and WMHV, and no clear relationships between FHS-CVS or systolic BP and rates of neurodegeneration when assessed across the whole sample, nor any evidence that they acted synergistically with Aβ. CONCLUSIONS: Aβ and presumed CVD have distinct and additive effects on rates of neurodegeneration in cognitively normal elderly. These findings have implications for the use of MRI measures as biomarkers of neurodegeneration and emphasize the importance of risk management and early intervention targeting both pathways
A complex scenario of tuberculosis transmission is revealed through genetic and epidemiological surveys in Porto
Tuberculosis (TB) incidence is decreasing worldwide and eradication is becoming plausible. In low-incidence countries, intervention on migrant populations is considered one of the most important strategies for elimination. However, such measures are inappropriate in European areas where TB is largely endemic, such as Porto in Portugal. We aim to understand transmission chains in Porto through a genetic characterization of Mycobacterium tuberculosis strains and through a detailed epidemiological evaluation of cases.This work was developed under the scope of the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER), and supported by contributions from Iceland, Liechtenstein and Norway through the European Economic Area Grants under the Public Health Initiative programme, (PT06, Project 000138DT1). TR is supported by the Portuguese Foundation for Science and Technology (FCT) through a post-doctoral grant (SFRH/BPD/108126/2015)info:eu-repo/semantics/publishedVersio
Does directly observed therapy (DOT) reduce drug resistant tuberculosis?
<p>Abstract</p> <p>Background</p> <p>Directly observed therapy (DOT) is a widely recommended and promoted strategy to manage tuberculosis (TB), however, there is still disagreement about the role of DOT in TB control and the impact it has on reducing the acquisition and transmission of drug resistant TB. This study compares the portion of drug resistant genotype clusters, representing recent transmission, within and between communities implementing programs differing only in their directly observed therapy (DOT) practices.</p> <p>Methods</p> <p>Genotype clusters were defined as 2 or more patient members with matching IS<it>6110 </it>restriction fragment length polymorphism (RFLP) and spoligotype patterns from all culture-positive tuberculosis cases diagnosed between January 1, 1995 and December 31, 2001. Logistic regression was used to compute maximum-likelihood estimates of odds ratios (ORs) and 95% confidence intervals (CIs) comparing cluster members with and without drug resistant isolates. In the universal DOT county, all patients received doses under direct observation of health department staff; whereas in selective DOT county, the majority of received patients doses under direct observation of health department staff, while some were able to self-administer doses.</p> <p>Results</p> <p>Isolates from 1,706 persons collected during 1,721 episodes of tuberculosis were genotyped. Cluster members from the selective DOT county were more than twice as likely than cluster members from the universal DOT county to have at least one isolate resistant to isoniazid, rifampin, and/or ethambutol (OR = 2.3, 95% CI: 1.7, 3.1). Selective DOT county isolates were nearly 5 times more likely than universal DOT county isolates to belong to clusters with at least 2 resistant isolates having identical resistance patterns (OR = 4.7, 95% CI: 2.9, 7.6).</p> <p>Conclusions</p> <p>Universal DOT for tuberculosis is associated with a decrease in the acquisition and transmission of resistant tuberculosis.</p
- …