35 research outputs found

    Circulating Biomarkers and Resistance to Endocrine Therapy in Metastatic Breast Cancers: Correlative Results from AZD9496 Oral SERD Phase I Trial.

    Get PDF
    PURPOSE: Common resistance mechanisms to endocrine therapy (ET) in estrogen receptor (ER)-positive metastatic breast cancers include, among others, ER loss and acquired activating mutations in the ligand-binding domain of the ER gene (ESR1LBDm). ESR1 mutational mediated resistance may be overcome by selective ER degraders (SERD). During the first-in-human study of oral SERD AZD9496, early changes in circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) were explored as potential noninvasive tools, alongside paired tumor biopsies, to assess pharmacodynamics and early efficacy. EXPERIMENTAL DESIGN: CTC were enumerated/phenotyped for ER and Ki67 using CellSearch in serial blood draws. ctDNA was assessed for the most common ESR1LBDm by droplet digital PCR (BioRad). RESULTS: Before starting AZD9496, 11 of 43 (25%) patients had ≥5 CTC/7.5 mL whole blood (WB), none of whom underwent reduction to <5 CTC/7.5 mL WB on C1D15. Five of 11 patients had baseline CTC-ER+, two of whom had CTC-ER+ reduction. CTC-Ki67 status did not change appreciably. Patients with ≥5 CTC/7.5 mL WB before treatment had worse progression-free survival (PFS) than patients with <5 CTC (P = 0.0003). Fourteen of 45 (31%) patients had ESR1LBDm + ctDNA at baseline, five of whom had ≥2 unique mutations. Baseline ESR1LBDm status was not prognostic. Patients with persistently elevated CTC and/or ESR1LBDm + ctDNA at C1D15 had worse PFS than patients who did not (P = 0.0007). CONCLUSIONS: Elevated CTC at baseline was a strong prognostic factor in this cohort. Early on-treatment changes were observed in CTC-ER+ and ESR1LBDm + ctDNA, but not in overall CTC number. Integrating multiple biomarkers in prospective trials may improve outcome prediction and ET resistance mechanisms' identification over a single biomarker

    A First-in-Human Study of the New Oral Selective Estrogen Receptor Degrader AZD9496 for ER+/HER2- Advanced Breast Cancer.

    Get PDF
    Purpose: AZD9496 is an oral nonsteroidal, small-molecule inhibitor of estrogen receptor alpha (ERα) and a potent and selective antagonist and degrader of ERα. This first-in-human phase I study determined the safety and tolerability of ascending doses of oral AZD9496 in women with estrogen receptor (ER)+/HER2- advanced breast cancer, characterized its pharmacokinetic (PK) profile, and made preliminary assessment of antitumor activity.Experimental design: Forty-five patients received AZD9496 [20 mg once daily (QD) to 600 mg twice daily (BID)] in a dose-escalation, dose-expansion "rolling 6" design. Safety, tolerability, and PK activity in each cohort were reviewed before escalating to the next dose. PK was determined by mass spectrometry. Adverse events (AEs) were graded according to the Common Terminology Criteria for Adverse Events (CTCAE) v4.0. Objective tumor response was evaluated by Response Evaluation Criteria in Solid Tumors (RECIST) v1.1.Results: Most common causally related AEs were diarrhea (35.6%), fatigue (31.1%), and nausea (22.2%), and seven patients had grade ≥3 AEs. Three patients experienced a dose-limiting toxicity: one each at 150 mg BID (abnormal hepatic function), 400 mg BID (diarrhea and elevated liver function tests), and 600 mg BID (diarrhea), and all were reversible. The maximum tolerated dose was not reached. Partial response was confirmed in one patient, who also had decreased tumor marker Ca15.3. Four patients had stable disease at 12 months' follow-up.Conclusions: AZD9496 is well tolerated with an acceptable safety profile, showing evidence of prolonged disease stabilization in heavily pretreated patients with ER+/HER2- advanced breast cancer. Clin Cancer Res; 1-9. ©2018 AACR

    Serial monitoring of genomic alterations in circulating tumor cells of ER-positive/HER2-negative advanced breast cancer: feasibility of precision oncology biomarker detection.

    Get PDF
    Nearly all estrogen receptor (ER)-positive (POS) metastatic breast cancers become refractory to endocrine (ET) and other therapies, leading to lethal disease presumably due to evolving genomic alterations. Timely monitoring of the molecular events associated with response/progression by serial tissue biopsies is logistically difficult. Use of liquid biopsies, including circulating tumor cells (CTC) and circulating tumor DNA (ctDNA), might provide highly informative, yet easily obtainable, evidence for better precision oncology care. Although ctDNA profiling has been well investigated, the CTC precision oncology genomic landscape and the advantages it may offer over ctDNA in ER-POS breast cancer remain largely unexplored. Whole-blood (WB) specimens were collected at serial time points from patients with advanced ER-POS/HER2-negative (NEG) advanced breast cancer in a phase I trial of AZD9496, an oral selective ER degrader (SERD) ET. Individual CTC were isolated from WB using tandem CellSearch® /DEPArray™ technologies and genomically profiled by targeted single-cell DNA next-generation sequencing (scNGS). High-quality CTC (n = 123) from 12 patients profiled by scNGS showed 100% concordance with ctDNA detection of driver estrogen receptor α (ESR1) mutations. We developed a novel CTC-based framework for precision medicine actionability reporting (MI-CTCseq) that incorporates novel features, such as clonal predominance and zygosity of targetable alterations, both unambiguously identifiable in CTC compared to ctDNA. Thus, we nominated opportunities for targeted therapies in 73% of patients, directed at alterations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), fibroblast growth factor receptor 2 (FGFR2), and KIT proto-oncogene, receptor tyrosine kinase (KIT). Intrapatient, inter-CTC genomic heterogeneity was observed, at times between time points, in subclonal alterations. Our analysis suggests that serial monitoring of the CTC genome is feasible and should enable real-time tracking of tumor evolution during progression, permitting more combination precision medicine interventions

    A Randomized, Open-label, Presurgical, Window-of-Opportunity Study Comparing the Pharmacodynamic Effects of the Novel Oral SERD AZD9496 with Fulvestrant in Patients with Newly Diagnosed ER+ HER2- Primary Breast Cancer

    Get PDF
    ©2020 American Association for Cancer Research. PURPOSE: Fulvestrant, the first-in-class selective estrogen receptor (ER) degrader (SERD), is clinically effective in patients with ER+ breast cancer, but it has administration and pharmacokinetic limitations. Pharmacodynamic data suggest complete ER degradation is not achieved at fulvestrant's clinically feasible dose. This presurgical study (NCT03236974) compared the pharmacodynamic effects of fulvestrant with AZD9496, a novel, orally bioavailable, nonsteroidal, potent SERD, in treatment-naïve patients with ER+ HER2- primary breast cancer awaiting curative intent surgery. PATIENTS AND METHODS: Patients were randomized 1:1 to receive AZD9496 250 mg twice daily from day 1 for 5-14 days, or fulvestrant 500 mg on day 1. On-treatment imaging-guided core tumor biopsies were taken between day 5 and 14 and compared with pretreatment diagnostic biopsies. The primary objective was to compare the effects of AZD9496 and fulvestrant on ER expression. Secondary objectives included changes in progesterone receptor (PR) and Ki-67 pharmacokinetic/pharmacodynamic relationships and safety. RESULTS: Forty-six women received treatment (AZD9496 n = 22; fulvestrant n = 24); 35 paired biopsies were evaluable (AZD9496 n = 15; fulvestrant n = 20). The least square mean estimate for ER H-score reduction was 24% after AZD9496 versus 36% after fulvestrant treatment (P = 0.86). AZD9496 also reduced PR H-scores (-33.3%) and Ki-67 levels (-39.9%) from baseline, but was also not superior to fulvestrant (PR: -68.7%, P = 0.97; Ki-67: -75.4%, P = 0.98). No new safety findings were identified. CONCLUSIONS: This was the first presurgical study to demonstrate that an oral SERD affects its key biological targets. However, AZD9496 was not superior to fulvestrant at the dose tested

    Exploring mechanisms of acquired resistance to HER2 (human epidermal growth factor receptor 2)-targeted therapies in breast cancer

    No full text
    HER2 (human epidermal growth factor receptor 2)-targeted therapy in breast cancer is one of the earliest and arguably most successful examples of the modern class of targeted drugs. Initially identified in the 1980s, the observation that HER2 acts as an independent predictor of poor prognosis in the 20% of breast cancer cases carrying a gene amplification or protein overexpression cemented its place at the forefront of research in this field. The outlook for patients with HER2-positive breast cancer has been revolutionized by the introduction of HER2-targeted agents, such as trastuzumab and lapatinib, yet resistance is frequently encountered and multiple different resistance mechanisms have been identified. We have explored resistance to a novel pan-HER inhibitor, AZD8931, and we examine mechanisms of resistance common to trastuzumab, lapatinib and AZD8931, and discuss the current problems associated with translating the wealth of pre-clinical data into clinical benefit.</jats:p
    corecore