195 research outputs found

    Analyses of decay constants and light-cone distribution amplitudes for s-wave heavy meson

    Full text link
    In this paper, a study of light-cone distribution amplitudes (LCDAs) for ss-wave heavy meson are presented in both general and heavy quark frameworks. Within the light-front approach, the leading twist light-cone distribution amplitudes, ϕM(u)\phi_M(u), and their relevant decay constants of heavy pseudoscalar and vector mesons, fMf_M, have simple relations. These relations can be further simplified when the heavy quark limit is taken into consideration. After fixing the parameters that appear in both Gaussian and power-law wave functions, the corresponding decay constants are calculated and compared with those of other theoretical approaches. The curves and the first six ξ\xi-moments of ϕM(u)\phi_M(u) are plotted and estimated. A conclusion is drawn from these results: Even though the values of the decay constants of the distinct mesons are almost equal, the curves of their LCDAs may have quite large differences, and vice versa. Additionally, in the heavy quark limit, the leading twist LCDAs, ΦQq(ω)\Phi_{Qq}(\omega) and ΦQq(ω)\Phi_{Qq}(\omega), are compared with the BB-meson LCDAs, ψ+(ω)\psi_+(\omega), suggested by the other theoretical groups.Comment: 25 pages, 3 figures, 4 tables, some typos are corrected, version to be published in Phys. Rev.

    Observations on the radiative corrections to pion beta-decay

    Full text link
    We find that, in the local V-A theory, the radiative corrections to pion beta-decay involving the weak vector current, when evaluated in the current algebra (CA) formulation in which quarks are the fundamental underlying fields, show a small difference with the more elementary calculations based directly on the pion fields. We show that this difference arises from a specific short-distance effect that depends on the algebra satisfied by the weak and electromagnetic currents. On the other hand, we present a simple theoretical argument that concludes that this difference does not occur when the CA formulation is compared with the chiral perturbation theory (chiPT) approach. Comparisons with previous studies, and with a more recent calculation based on chiPT, are included. We also briefly review the important differences between the results in the local V-A theory and the Standard Model.Comment: 5 pages, 1 figure. V2: two paragraphs have been added in Section III. Final version on PR

    Relation between Light Cone Distribution Amplitudes and Shape Function in B mesons

    Full text link
    The Bakamjian-Thomas relativistic quark model provides a Poincar\'e representation of bound states with a fixed number of constituents and, in the heavy quark limit, form factors of currents satisfy covariance and Isgur-Wise scaling. We compute the Light Cone Distribution Amplitudes of BB mesons ϕ±B(ω)\phi_{\pm}^B(\omega) as well as the Shape Function S(ω)S(\omega), that enters in the decay B→XsγB \to X_s \gamma, that are also covariant in this class of models. The LCDA and the SF are related through the quark model wave function. The former satisfy, in the limit of vanishing constituent light quark mass, the integral relation given by QCD in the valence sector of Fock space. Using a gaussian wave function, the obtained S(ω)S(\omega) is identical to the so-called Roman Shape Function. From the parameters for the latter that fit the B→XsγB \to X_s\gamma spectrum we predict the behaviour of ϕ±B(ω)\phi_{\pm}^B(\omega). We discuss the important role played by the constituent light quark mass. In particular, although ϕ−B(0)≠0\phi_-^B(0) \not= 0 for vanishing light quark mass, a non-vanishing mass implies the unfamiliar result ϕ−B(0)=0\phi_-^B (0) = 0. Moreover, we incorporate the short distance behaviour of QCD to ϕ+B(ω)\phi_+^B (\omega), which has sizeable effects at large ω\omega. We obtain the values for the parameters Λˉ≅0.35\bar{\Lambda} \cong 0.35 GeV and λB−1≅1.43\lambda_B^{-1} \cong 1.43 GeV−1^{-1}. We compare with other theoretical approaches and illustrate the great variety of models found in the literature for the functions ϕ±B(ω)\phi_{\pm}^B (\omega); hence the necessity of imposing further constraints as in the present paper. We briefly review also the different phenomena that are sensitive to the LCDA.Comment: 6 figure

    SU(3) symmetry breaking in decay constants and electromagnetic properties of pseudoscalar heavy mesons

    Full text link
    In this paper, the decay constants and mean square radii of pseudoscalar heavy mesons are studied in the SU(3) symmetry breaking. Within the light-front framework, the ratios fDs/fDf_{D_s}/f_D and fBs/fBf_{B_s}/f_B are individually estimated using the hyperfine splittings in the D(s)∗−D(s)D_{(s)}^*-D_{(s)} and B(s)∗−B(s)B_{(s)}^*-B_{(s)} states and the light quark masses, ms,qm_{s,q} (q=u,dq=u,d), to extract the wave function parameter β\beta. The values fDs/fD=1.29±0.07f_{D_s}/f_D= 1.29\pm0.07 and fBs/fB=1.32±0.08f_{B_s}/f_B= 1.32\pm 0.08 are obtained, which are not only chiefly determined by the ratio of light quark masses ms/mqm_s/m_q, but also insensitive to the heavy quark masses mc,bm_{c,b} and the decay constants fD,Bf_{D,B}. The dependence of fBc/fBf_{B_c}/f_B on ΔMBcBc∗\Delta M_{B_cB^*_c} with the varied charm quark masses is also shown. In addition, the mean square radii are estimated as well. The values =0.740+0.050−0.041\sqrt{} =0.740^{-0.041}_{+0.050} and =0.711+0.058−0.049\sqrt{} =0.711^{-0.049}_{+0.058} are obtained, and the sensitivities of on the heavy and light quark masses are similar to those of the decay constants.Comment: 21 pages, 5 figures, 4 tables, some typos are corrected, version to be published in Phys. Rev.

    Diffractive Higgs Production from Intrinsic Heavy Flavors in the Proton

    Full text link
    We propose a novel mechanism for exclusive diffractive Higgs production pp→pHppp \to p H p in which the Higgs boson carries a significant fraction of the projectile proton momentum. This mechanism will provide a clear experimental signal for Higgs production due to the small background in this kinematic region. The key assumption underlying our analysis is the presence of intrinsic heavy flavor components of the proton bound state, whose existence at high light-cone momentum fraction xx has growing experimental and theoretical support. We also discuss the implications of this picture for exclusive diffractive quarkonium and other channels.Comment: 30 pages, 5 figure

    Twist-2 Light-Cone Pion Wave Function

    Get PDF
    We present an analysis of the existing constraints for the twist-2 light-cone pion wave function. We find that existing information on the pion wave function does not exclude the possibility that the pion wave function attains its asymptotic form. New bounds on the parameters of the pion wave function are presented.Comment: 7 pages, LaTeX, 1 PS-figure, one reference added, minor changes in the tex

    Resonant spin-dependent electron coupling in a III-V/II-VI heterovalent double quantum well

    Full text link
    We report on design, fabrication, and magnetooptical studies of a III-V/II-VI hybrid structure containing a GaAs/AlGaAs/ZnSe/ZnCdMnSe double quantum well (QW). The structure design allows one to tune the QW levels into the resonance, thus facilitating penetration of the electron wave function from the diluted magnetic semiconductor ZnCdMnSe QW into the nonmagnetic GaAs QW and vice versa. Magneto-photoluminescence studies demonstrate level anticrossing and strong intermixing resulting in a drastic renormalization of the electron effective g factor, in perfect agreement with the energy level calculations.Comment: 4 pages, 5 Postscript figures, uses revtex

    A novel approach to light-front perturbation theory

    Get PDF
    We suggest a possible algorithm to calculate one-loop n-point functions within a variant of light-front perturbation theory. The key ingredients are the covariant Passarino-Veltman scheme and a surprising integration formula that localises Feynman integrals at vanishing longitudinal momentum. The resulting expressions are generalisations of Weinberg's infinite-momentum results and are manifestly Lorentz invariant. For n = 2 and 3 we explicitly show how to relate those to light-front integrals with standard energy denominators. All expressions are rendered finite by means of transverse dimensional regularisation.Comment: 10 pages, 5 figure

    Study of Radiative Leptonic D Meson Decays

    Full text link
    We study the radiative leptonic DD meson decays of D^+_{(s)}\to \l^+\nu_{\l}\gamma (\l=e,\mu,\tau), D0→ννˉγD^0\to \nu\bar{\nu}\gamma and D^0\to \l^+\l^-\gamma (l=e,μl=e,\mu) within the light front quark model. In the standard model, we find that the decay branching ratios of D(s)+→e+νeγD^+_{(s)}\to e^+\nu_e\gamma, D(s)+→μ+νμγD^+_{(s)}\to\mu^+\nu_{\mu}\gamma and D(s)+→τ+ντγD^+_{(s)}\to\tau^+\nu_{\tau}\gamma are 6.9×10−66.9\times 10^{-6} (7.7×10−57.7\times 10^{-5}), 2.5×10−52.5\times 10^{-5} (2.6×10−42.6\times 10^{-4}), and 6.0×10−66.0\times 10^{-6} (3.2×10−43.2\times 10^{-4}), and that of D^0\to\l^+\l^-\gamma (\l=e,\mu) and D0→ννˉγD^0\to\nu\bar{\nu}\gamma are 6.3×10−116.3\times 10^{-11} and 2.7×10−162.7\times 10^{-16}, respectively.Comment: 23 pages, 6 Figures, LaTex file, a reference added, to be published in Mod. Phys. Lett.
    • …
    corecore