33 research outputs found
Symbiotic and genetic diversity of Rhizobium galegae isolates collected from the Galega orientalis gene center in the Caucasus
This paper explores the relationship between the genetic diversity of rhizobia and the morphological diversity of their plant hosts. Rhizobium galegae strains were isolated from nodules of wild Galega orientalis and Galega officinalis in the Caucasus, the center of origin for G. orientalis. All 101 isolates were characterized by genomic amplified fragment length polymorphism fingerprinting and by PCR-restriction fragment length polymorphism (RFLP) of the rRNA intergenic spacer and of five parts of the symbiotic region adjacent to nod box sequences. By all criteria, the R. galegae bv. officinalis and R. galegae bv. orientalis strains form distinct clusters. The nod box regions are highly conserved among strains belonging to each of the two biovars but differ structurally to various degrees between the biovars. The findings suggest varying evolutionary pressures in different parts of the symbiotic genome of closely related R. galegae biovars. Sixteen R. galegae bv. orientalis strains harbored copies of the same insertion sequence element; all were isolated from a particular site and belonged to a limited range of chromosomal genotypes. In all analyses, the Caucasian R. galegae bv. orientalis strains were more diverse than R. galegae bv. officinalis strains, in accordance with the gene center theory
Analysis of DNA Methylation in Various Swine Tissues
DNA methylation is known to play an important role in regulating gene expression during biological development and tissue differentiation in eukaryotes. In this study, we used the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) method to assess the extent and pattern of cytosine methylation in muscle, heart, liver, spleen, lung, kidney and stomach from the swine strain Laiwu, and we also examined specific methylation patterns in the seven tissues. In total, 96,371 fragments, each representing a recognition site cleaved by either or both EcoRI + HpaII and EcoRI + MspI, the HpaII and MspI are isoschizomeric enzymes, were amplified using 16 pairs of selective primers. A total of 50,094 sites were found to be methylated at cytosines in seven tissues. The incidence of DNA methylation was approximately 53.99% in muscle, 51.24% in the heart, 50.18% in the liver, 53.31% in the spleen, 51.97% in the lung, 51.15% in the kidney and 53.39% in the stomach, as revealed by the incidence of differential digestion. Additionally, differences in DNA methylation levels imply that such variations may be related to specific gene expression during tissue differentiation, growth and development. Three types of bands were generated in the F-MSAP profile, the total numbers of these three types of bands in the seven tissues were 46,277, 24,801 and 25,293, respectively