113 research outputs found

    Predicting performance and survival across topographically heterogeneous landscapes: the global pest insect Helicoverpa armigera (Hübner, 1808) (Lepidoptera: Noctuidae)

    Get PDF
    Species distribution models provide a means of better understanding how climate constrains the survival of organisms. Although effective in predicting the presence or absence of species across the landscape, model outputs are not necessarily relevant to, or easily interpreted for, local management and conservation programs. An alternative approach, however, would be to use species distribution models as a tool for applied ecological projects. Integrative pest management programs, for example, which aim to control the abundance and distribution of agricultural insect pests may benefit from a model that predicts the relative performance and survival of the target pest on its host plant. We present a microclimate model to predict ambient, and thus the equilibrium body, temperature of the globally significant agricultural pest the bollworm, Helicoverpa armigera. We allow the different life-history stages of H. armigera to select specific microclimates within a host apple tree, thus developing a realistic framework for predicting core-body temperatures, and proxies for physiological performance and fitness, of this species. Subsequently, we incorporate the predicted body temperature with established data for developmental rates and critical-temperature thresholds to predict how fluctuations in temperature and variation in topography may affect phenology and survival. Although the model requires further validation against empirical data, the current outputs allow insights into how variation in local topography, farming practices and climate change will affect the relative phenology and survival of H. armigera. Moreover, the biophysical nature of the model means that with some modifications to parameter inputs, the fitness and survival of a range of pest insects on their host plants can be explored more readily

    A hierarchy of factors influence discontinuous gas exchange in the grasshopper Paracinema tricolor (Orthoptera: Acrididae)

    Get PDF
    The evolutionary origin and maintenance of discontinuous gas exchange (DGE) in tracheate arthropods are poorly understood and highly controversial. We investigated prioritization of abiotic factors in the gas exchange control cascade by examining oxygen, water and haemolymph pH regulation in the grasshopper Paracinema tricolor. Using a full-factorial design, grasshoppers were acclimated to hypoxic or hyperoxic (5% O2, 40% O2) gas conditions, or dehydrated or hydrated, whereafter their CO2 release was measured under a range of O2 and relative humidity (RH) conditions (5%, 21%, 40% O2 and 5%, 60%, 90% RH). DGE was significantly less common in grasshoppers acclimated to dehydrating conditions compared with the other acclimations (hypoxia, 98%; hyperoxia, 100%; hydrated, 100%; dehydrated, 67%). Acclimation to dehydrating conditions resulted in a significant decrease in haemolymph pH from 7.0±0.3 to 6.6±0.1 (mean ± s.d., P=0.018) and also significantly increased the open (O)-phase duration under 5% O2 treatment conditions (5% O2, 44.1±29.3 min; 40% O2, 15.8±8.0 min; 5% RH, 17.8±1.3 min; 60% RH, 24.0±9.7 min; 90% RH, 20.6±8.9 min). The observed acidosis could potentially explain the extension of the O-phase under low RH conditions, when it would perhaps seem more useful to reduce the O-phase to lower respiratory water loss. The results confirm that DGE occurrence and modulation are affected by multiple abiotic factors. A hierarchical framework for abiotic factors influencing DGE is proposed in which the following stressors are prioritized in decreasing order of importance: oxygen supply, CO2 excretion and pH modulation, oxidative damage protection and water savings

    Cold treatment enhances low-temperature flight performance in false codling moth, Thaumatotibia leucotreta (Lepidoptera: Tortricidae)

    Get PDF
    1 In sterile insect technique programmes, temperatures experienced by insects during rearing and handling, along with cool temperatures after release, can negatively affect performance and activity levels. Phenotypic plasticity (trait modifications caused by prior stress exposure) can offset these effects but is poorly understood in many species and traits. 2 We investigated the effects of a cold treatment (2 ∘C for 16 h) on flight performance in adult false codling moth, Thaumatotibia leucotreta. Using diverse methods, flight performance was tested using flight assays in the laboratory and in the field under varying environmental conditions. 3 The flight performance of T. leucotreta in the laboratory was affected by cold treatment (relative to a 25 ∘C control group), test temperature and their interaction. Field recapture of released moths was significantly affected by the interaction between cold treatment and environmental conditions. 4 Field recapture counts depended on the ambient temperature upon release. For example, under warmer conditions (>17 ∘C), the recapture count of cold-treated moths was lower than that of the untreated control group, whereas the recapture count of cold-treated moths at cooler temperatures was significantly higher. 5 Our results suggest a temperature-dependent interaction between acute cold exposure and flight performance in adult T. leucotreta, which may be used to enhance the efficacy of the sterile insect technique under cooler environmental conditions

    Population dynamics of Eldana saccharina Walker (Lepidoptera: Pyralidae): application of a biophysical model to understand phenological variation in an agricultural pest.

    Get PDF
    Understanding pest population dynamics and seasonal phenology is a critical component of modern integrated pest-management programs. Accurate forecasting allows timely, cost-effective interventions, including maximum efficacy of, for example, biological control and/or sterile insect technique. Due to the variation in life stage-related sensitivity toward climate, insect pest population abundance models are often not easily interpreted or lack direct relevance to management strategies in the field. Here we apply a process-based (biophysical) model that incorporates climate data with life stage-dependent physiology and life history to attempt to predict Eldana saccharina life stage and generation turnover in sugarcane fields. Fitness traits are modelled at two agricultural locations in South Africa that differ in average temperature (hereafter a cold and a warm site).We test whether the life stage population structures in the field entering winter and local climate during winter directly affect development rates, and therefore interact to determine the population dynamics and phenological responses of E. saccharina in subsequent spring and summer seasons. The model predicts that: (1) E. saccharina can cycle through more generations at the warm site where fewer hours of cold and heat stress are endured, and (2) at the cold site, overwintering as pupae (rather than larvae) confer higher relative fitness and fecundity in the subsequent summer adult moths. The model predictions were compared with a large dataset of field observations from scouting records. Model predictions for larval presence (or absence) generally overlapped well with positive (or negative) scout records. These results are important for integrated pest management strategies by providing a useful foundation for future population dynamics models, and are applicable to a variety of agricultural landscapes, but especially the sugarcane industry of South Africa

    Deconstructing intercontinental invasion pathway hypotheses of the Mediterranean fruit fly (Ceratitis capitata) using a Bayesian inference approach: are port interceptions and quarantine protocols successfully preventing new invasions?

    Get PDF
    Aim Knowledge of how effective interceptions and quarantine measures are in preventing new biological invasions is of paramount importance for maintaining ecosystem function in a rapidly changing world. Here, we determine current macrogeographic population structure and routes of invasion of the Mediterranean fruit fly (Ceratitis capitata) using genetic approaches and reconstruct and test invasion pathway hypotheses in a Bayesian framework. Location Africa, Australia, Greece, Guatemala and Madeira. Methods We sampled 323 C. capitata individuals from 14 locations worldwide and genotyped all individuals for 11 polymorphic microsatellite markers. We calculated measures of genetic diversity and determined population structure. Moreover, we reconstructed and tested eighteen invasion pathway scenarios in a Bayesian framework using ABC modelling. Results We show a decrease in genetic diversity outside the native range (Africa) into the introduced range (Australia, Greece, Guatemala and Madeira). The most likely invasion pathway scenario closely matched the historical records, with an initial colonization of Europe from Africa and a secondary colonization of Australia from Europe. Moreover, we show an introduction from Greece to the Americas and, finally, a back introduction into South Africa from Europe. Main conclusions Given the lack of new introductions into colonized (non-African) locations despite increasing trade, and apart from the initial invasion and establishment of the species outside of Africa, we conclude that quarantine and interception measures have been largely successful to date

    Geographic variation and plasticity in climate stress resistance among southern African populations of Ceratitis capitate (Weidemann) (Diptera: Tephritidae)

    Get PDF
    Traits of thermal sensitivity or performance are typically the focus of species distribution modelling. Among-population trait variation, trait plasticity, population connectedness and the possible climatic covariation thereof are seldom accounted for. Here, we examine multiple climate stress resistance traits, and the plasticity thereof, for a globally invasive agricultural pest insect, the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). We also accounted for body size and population genetic connectivity among distinct populations from diverse bioclimatic regions across southern Africa. Desiccation resistance, starvation resistance, and critical thermal minimum (CTmin) and maximum (CTmax) of C. capitata varied between populations. For thermal tolerance traits, patterns of flexibility in response to thermal acclimation were suggestive of beneficial acclimation, but this was not the case for desiccation or starvation resistance. Population differences in measured traits were larger than those associated with acclimation, even though gene flow was high. Desiccation resistance was weakly but positively affected by growing degree-days. There was also a weak positive relationship between CTmin and temperature seasonality, but CTmax was weakly but negatively affected by the same bioclimatic variable. Our results suggest that the invasive potential of C. capitata may be supported by adaptation of tolerance traits to local bioclimatic conditions

    An interaction switch predicts the nested architecture of mutualistic networks

    Get PDF
    Nested architecture is distinctive in plant–animal mutualistic networks. However, to date an integrative and quantitative explanation has been lacking. It is evident that species often switch their interactive partners in realworld mutualistic networks such as pollination and seed-dispersal networks. By incorporating an interaction switch into a novel multi-population model, we show that the nested architecture rapidly emerges from an initially random network. The model allowing interaction switches between partner species produced predictions which fit remarkably well with observations from 81 empirical networks. Thus, the nested architecture in mutualistic networks could be an intrinsic physical structure of dynamic networks and the interaction switch is likely a key ecological process that results in nestedness of real-world networks. Identifying the biological processes responsible for network structures is thus crucial for understanding the architecture of ecological networks.F.Z. is supported by the DST-NRF Centre of Excellence for Invasion Biology at Stellenbosch University; C.H. is supported by the NRF Blue Sky Research Programme; J.S.T. is supported by the South African National Research Foundation

    Water loss in insects: An environmental change perspective

    Get PDF
    In the context of global environmental change much of the focus has been on changing temperatures. However, patterns of rainfall and water availability have also been changing and are expected to continue doing so. In consequence, understanding the responses of insects to water availability is important, especially because it has a pronounced influence on insect activity, distribution patterns, and species richness. Here we therefore provide a critical review of key questions that either are being or need to be addressed in this field. First, an overview of insect behavioural responses to changing humidity conditions and the mechanisms underlying sensing of humidity variation is provided. The primary sensors in insects belong to the temperature receptor protein superfamily of cation channels. Temperature-activated transient receptor potential ion channels, or thermoTRPs, respond to a diverse range of stimuli and may be a primary integrator of sensory information, such as environmental temperature and moisture. Next we touch briefly on the components of water loss, drawing attention to a new, universal model of the water costs of gas exchange and its implications for responses to a warming, and in places drying, world. We also provide an overview of new understanding of the role of the sub-elytral chamber for water conservation, and developments in understanding of the role of cuticular hydrocarbons in preventing water loss. Because of an increasing focus on the molecular basis of responses to dehydration stress we touch briefly on this area, drawing attention to the role of sugars, heat shock proteins, aquaporins, and LEA proteins. Next we consider phenotypic plasticity or acclimation responses in insect water balance after initial exposures to altered humidity, temperature or nutrition. Although beneficial acclimation has been demonstrated in several instances, this is not always the case. Laboratory studies show that responses to selection for enhanced ability to survive water stress do evolve and that genetic variation for traits underlying such responses does exist in many species. However, in others, especially tropical, typically narrowly distributed species, this appears not to be the case. Using the above information we then demonstrate that habitat alteration, climate change, biological invasions, pollution and overexploitation are likely to be having considerable effects on insect populations mediated through physiological responses (or the lack thereof) to water stress, and that these effects may often be non-intuitive

    Insect rate-temperature relationships: Environmental variation and the metabolic theory of ecology

    Get PDF
    Much of the recent discussion concerning the form and underlying mechanistic basis of metabolic rate–temperature and development rate–temperature relationships has been recipitated by the development of the metabolic theory of ecology (MTE). Empirical tests of the theory’s fundamental equation are an essential component of establishing its validity. Here, we test the temperature component of the fundamental equation of the MTE as it applies to metabolic rate and development rate, using insects as model organisms. Specifically, we test (i) whether mean activation energies, E, approximate the 0.65 eV value proposed by the proponents of the MTE and whether the range of values is tightly constrained between 0.6 and 0.7 eV, as they have argued; (ii) whether phylogenetic signal is apparent in the rate-temperature relationships; (iii) whether the slopes of the rate-temperature relationships show consistent, directional variation associated with environmental variables; and (iv) whether intra- and interspecific rate-temperature relationships differ significantly. Because the majority of activation energy values fell outside the predicted range and rate-temperature relationships showed consistent directional variation correlated with large-scale climatic variation, we conclude that data from insects provide only limited support for the MTE. In consequence, we consider alternative explanations for variation in rate-temperature relationships

    Respiratory dynamics of discontinuous gas exchange in the tracheal system of the desert locust, Schistocerca gregaria

    Get PDF
    CITATION: Groenewald, B., et al. 2012. Respiratory dynamics of discontinuous gas exchange in the tracheal system of the desert locust, Schistocerca gregaria. Journal of Experimental Biology, 215(13):2301-2307. doi:10.1242/jeb.070995The original publication is available at https://journals.biologists.com/jebGas exchange dynamics in insects is of fundamental importance to understanding evolved variation in breathing patterns, such as discontinuous gas exchange cycles (DGCs). Most insects do not rely solely on diffusion for the exchange of respiratory gases but may also make use of respiratory movements (active ventilation) to supplement gas exchange at rest. However, their temporal dynamics have not been widely investigated. Here, intratracheal pressure, CO2 and body movements of the desert locust Schistocerca gregaria were measured simultaneously during the DGC and revealed several important aspects of gas exchange dynamics. First, S. gregaria employs two different ventilatory strategies, one involving dorso-ventral contractions and the other longitudinal telescoping movements. Second, although a true spiracular closed (C)-phase of the DGC could be identified by means of subatmospheric intratracheal pressure recordings, some CO2 continued to be released. Third, strong pumping actions do not necessarily lead to CO2 release and could be used to ensure mixing of gases in the closed tracheal system, or enhance water vapour reabsorption into the haemolymph from fluid-filled tracheole tips by increasing the hydrostatic pressure or forcing fluid into the haemocoel. Finally, this work showed that the C-phase of the DGC can occur at any pressure. These results provide further insights into the mechanistic basis of insect gas exchange.National Research Foundationhttps://journals.biologists.com/jeb/article/215/13/2301/10912/Respiratory-dynamics-of-discontinuous-gas-exchangePublisher's versio
    • …
    corecore