1,107 research outputs found

    Citrullinated fibrinogen shows defects in FPA and FPB release and fibrin polymerization catalyzed by thrombin

    Get PDF
    ArticleClinica Chimica Acta. 401(1-2):119-123 (2009)journal articl

    Microscopic Theory of Skyrmions in Quantum Hall Ferromagnets

    Full text link
    We present a microscopic theory of skyrmions in the monolayer quantum Hall ferromagnet. It is a peculiar feature of the system that the number density and the spin density are entangled intrinsically as dictated by the W%_{\infty} algebra. The skyrmion and antiskyrmion states are constructed as W_{\infty }-rotated states of the hole-excited and electron-excited states, respectively. They are spin textures accompanied with density modulation that decreases the Coulomb energy. We calculate their excitation energy as a function of the Zeeman gap and compared the result with experimental data.Comment: 15 pages (to be published in PRB

    Spin gap in the 2D electron system of GaAs/AlGaAs single heterojunctions in weak magnetic fields

    Full text link
    We study the interaction-enhanced spin gaps in the two-dimensional electron gas confined in GaAs/AlGaAs single heterojunctions subjected to weak magnetic fields. The values are obtained from the chemical potential jumps measured by magnetocapacitance. The gap increase with parallel magnetic field indicates that the lowest-lying charged excitations are accompanied with a single spin flip at the odd-integer filling factor nu=1 and nu=3, in disagreement with the concept of skyrmions.Comment: as publishe

    Spectral variability in Cygnus X-3

    Full text link
    We model the broad-band X-ray spectrum of Cyg X-3 in all states displayed by this source as observed by the Rossi X-ray Timing Explorer. From our models, we derive for the first time unabsorbed spectral shapes and luminosities for the full range of spectral states. We interpret the unabsorbed spectra in terms of Comptonization by a hybrid electron distribution and strong Compton reflection. We study the spectral evolution and compare with other black hole as well as neutron star sources. We show that a neutron star accretor is not consistent with the spectral evolution as a function of Ledd and especially not with the transition to a hard state. Our results point to the compact object in Cyg X-3 being a massive, ~30 Msun black hole.Comment: 14 pages, 9 figures, accepted for publication in MNRA

    Collective modes of CP(3) Skyrmion crystals in quantum Hall ferromagnets

    Full text link
    The two-dimensional electron gas in a bilayer quantum Hall system can sustain an interlayer coherence at filling factor nu=1 even in the absence of tunneling between the layers. This system has low-energy charged excitations which may carry textures in real spin or pseudospin. Away from filling factor nu =1 a finite density of these is present in the ground state of the 2DEG and forms a crystal. Depending on the relative size of the various energy scales, such as tunneling (Delta_SAS), Zeeman coupling (Delta_Z) or electrical bias (Delta_b), these textured crystal states can involve spin, pseudospin, or both intertwined. In this article, we present a comprehensive numerical study of the collective excitations of these textured crystals using the GRPA. For the pure spin case, at finite Zeeman coupling the state is a Skyrmion crystal with a gapless phonon mode, and a separate Goldstone mode that arises from a broken U(1) symmetry. At zero Zeeman coupling, we demonstrate that the constituent Skyrmions break up, and the resulting state is a meron crystal with 4 gapless modes. In contrast, a pure pseudospin Skyrme crystal at finite tunneling has only the phonon mode. For Delta_SAS=0, the state evolves into a meron crystal and supports an extra gapless U(1) mode in addition to the phonon. For a CP(3) Skyrmion crystal, we find a U(1) gapless mode in the presence of the symmetry-breaking fields. In addition, a second mode with a very small gap is present in the spectrum.Comment: 16 pages and 12 eps figure

    Big Bang Nucleosynthesis and Lepton Number Asymmetry in the Universe

    Get PDF
    Recently it is reported that there is the discrepancy between big bang nucleosynthesis theory and observations (BBN crisis). We show that BBN predictions agree with the primordial abundances of light elements, He4, D, He3 and Li7 inferred from the observational data if an electron neutrino has a net chemical potential xi_{nu_e} due to lepton asymmetry. We estimate that xi_{nu_e} = 0.043^{+0.040}_{-0.040} (95% C.L.) and Omega_bh^2 = 0.015^{+0.006}_{-0.003} (95% C.L.).Comment: 10 pages, using AAS LATEX and three postscript figure
    corecore