119 research outputs found

    Rapid Increase in Plasma Membrane Chloride Permeability during Wound Resealing in Starfish Oocytes

    Get PDF
    Plasma membrane wound repair is an important but poorly understood process. We used femtosecond pulses from a Ti-Sapphire laser to make multiphoton excitationā€“induced disruptions of the plasma membrane while monitoring the membrane potential and resistance. We observed two types of wounds that depolarized the plasma membrane. At threshold light levels, the membrane potential and resistance returned to prewound values within seconds; these wounds were not easily observed by light microscopy and resealed in the absence of extracellular Ca2+. Higher light intensities create wounds that are easily visible by light microscopy and require extracellular Ca2+ to reseal. Within a few seconds the membrane resistance is āˆ¼100-fold lower, while the membrane potential has depolarized from āˆ’80 to āˆ’30 mV and is now sensitive to the Clāˆ’ concentration but not to that of Na+, K+, or H+. We suggest that the chloride sensitivity of the membrane potential, after wound resealing, is due to the fusion of chloride-permeable intracellular membranes with the plasma membrane

    Immunolocalization of the Heterotrimeric Kinesin-Related Protein KRP(85/95) in the Mitotic Apparatus of Sea Urchin Embryos

    Get PDF
    AbstractWe have used monoclonal antibodies to perform confocal light microscopic immunolocalization of KRP(85/95), a heterotrimeric plus-end-directed microtubule motor protein, in dividing cells of sea urchin embryos. Embryos were stained during the first division cycle, and dissociated blastomeres were stained at the 32- to 64-cell stages. Double labeling of the dividing cells with anti-tubulin and anti-KRP(85/95) showed a clear concentration of the motor protein in the mitotic apparatus; KRP(85/95) appeared to associate with pericentriolar regions during prophase, with kinetochore-to-pole microtubules during metaphase, and, in a striking fashion, with the spindle interzone during anaphase. KRP(85/95) began to accumulate in the interzone immediately following chromosome separation and the area of concentration expanded with the lengthening of the interzonal region during anaphase. During telophase KRP(85/95) appeared to disperse with the establishment of the cleavage furrow and did not concentrate in the midbody. KRP(85/95) staining in the mitotic apparatus was punctate and detergent-sensitive, suggesting an association with membranous vesicles, but unlike kinesin, KRP(85/95) did not appear to codistribute with calsequestrin-containing endoplasmic reticulum. Finally, KRP(85/95) appears to be present in dividing blastomeres up to at least the blastula stage, but, unlike kinesin, it is not expressed in terminally differentiated, nonmitotic coelomocytes of the adult animal. These results suggest that the expression and targeting of KRP(85/95) and kinesin differ and that KRP(85/95) may play a role in vesicle transport during embryonic cell division

    Nuclear envelope breakdown in starfish oocytes proceeds by partial NPC disassembly followed by a rapidly spreading fenestration of nuclear membranes

    Get PDF
    Breakdown of the nuclear envelope (NE) was analyzed in live starfish oocytes using a size series of fluorescently labeled dextrans, membrane dyes, and GFP-tagged proteins of the nuclear pore complex (NPC) and the nuclear lamina. Permeabilization of the nucleus occurred in two sequential phases. In phase I the NE became increasingly permeable for molecules up to āˆ¼40 nm in diameter, concurrent with a loss of peripheral nuclear pore components over a time course of 10 min. The NE remained intact on the ultrastructural level during this time. In phase II the NE was completely permeabilized within 35 s. This rapid permeabilization spread as a wave from one epicenter on the animal half across the nuclear surface and allowed free diffusion of particles up to āˆ¼100 nm in diameter into the nucleus. While the lamina and nuclear membranes appeared intact at the light microscopic level, a fenestration of the NE was clearly visible by electron microscopy in phase II. We conclude that NE breakdown in starfish oocytes is triggered by slow sequential disassembly of the NPCs followed by a rapidly spreading fenestration of the NE caused by the removal of nuclear pores from nuclear membranes still attached to the lamina

    Identification of PLCĪ³-Dependent and -Independent Events during Fertilization of Sea Urchin Eggs

    Get PDF
    AbstractAt fertilization, sea urchin eggs undergo a series of activation events, including a Ca2+action potential, Ca2+release from the endoplasmic reticulum, an increase in intracellular pH, sperm pronuclear formation, MAP kinase dephosphorylation, and DNA synthesis. To examine which of these events might be initiated by activation of phospholipase CĪ³ (PLCĪ³), which produces the second messengers inositol trisphosphate (IP3) and diacylglycerol, we used recombinant SH2 domains of PLCĪ³ as specific inhibitors. Sea urchin eggs were co-injected with a GST fusion protein composed of the two tandem SH2 domains of bovine PLCĪ³ and (1) Ca2+green dextran to monitor intracellular free Ca2+, (2) BCECF dextran to monitor intracellular pH, (3) Oregon Green dUTP to monitor DNA synthesis, or (4) fluorescein 70-kDa dextran to monitor nuclear envelope formation. Microinjection of the tandem SH2 domains of PLCĪ³ produced a concentration-dependent inhibition of Ca2+release and also inhibited cortical granule exocytosis, cytoplasmic alkalinization, MAP kinase dephosphorylation, DNA synthesis, and cleavage after fertilization. However, the Ca2+action potential, sperm entry, and sperm pronuclear formation were not prevented by injection of the PLCĪ³SH2 domain protein. Microinjection of a control protein, the tandem SH2 domains of the phosphatase SHP2, had no effect on Ca2+release, cortical granule exocytosis, DNA synthesis, or cleavage. Specificity of the inhibitory action of the PLCĪ³SH2 domains was further indicated by the finding that microinjection of PLCĪ³SH2 domains that had been point mutated at a critical arginine did not inhibit Ca release at fertilization. Additionally, Ca2+release in response to microinjection of IP3, cholera toxin, cADP ribose, or cGMP was not inhibited by the PLCĪ³SH2 fusion protein. These results indicate that PLCĪ³ plays a key role in several fertilization events in sea urchin eggs, including Ca2+release and DNA synthesis, but that the action potential, sperm entry, and male pronuclear formation can occur in the absence of PLCĪ³ activation or Ca2+increase

    Enantiomerically enriched, polycrystalline molecular sieves

    Get PDF
    Zeolite and zeolite-like molecular sieves are being used in a large number of applications such as adsorption and catalysis. Achievement of the long-standing goal of creating a chiral, polycrystalline molecular sieve with bulk enantioenrichment would enable these materials to perform enantioselective functions. Here, we report the synthesis of enantiomerically enriched samples of a molecular sieve. Enantiopure organic structure directing agents are designed with the assistance of computational methods and used to synthesize enantioenriched, polycrystalline molecular sieve samples of either enantiomer. Computational results correctly predicted which enantiomer is obtained, and enantiomeric enrichment is proven by high-resolution transmission electron microscopy. The enantioenriched and racemic samples of the molecular sieves are tested as adsorbents and heterogeneous catalysts. The enantioenriched molecular sieves show enantioselectivity for the ring opening reaction of epoxides and enantioselective adsorption of 2-butanol (the R enantiomer of the molecular sieve shows opposite and approximately equal enantioselectivity compared with the S enantiomer of the molecular sieve, whereas the racemic sample of the molecular sieve shows no enantioselectivity)
    • ā€¦
    corecore