3,390 research outputs found

    Reconstruction of phase dynamics from macroscopic observations based on linear and nonlinear response theories

    Get PDF
    We propose a method to reconstruct the phase dynamics in rhythmical interacting systems from macroscopic responses to weak inputs by developing linear and nonlinear response theories, which predict the responses in a given system. By solving an inverse problem, the method infers an unknown system: the natural frequency distribution, the coupling function, and the time delay which is inevitable in real systems. In contrast to previous methods, our method requires neither strong invasiveness nor microscopic observations. We demonstrate that the method reconstructs two phase systems from observed responses accurately. The qualitative methodological advantages demonstrated by our quantitative numerical examinations suggest its broad applicability in various fields, including brain systems, which are often observed through macroscopic signals such as electroencephalograms and functional magnetic response imaging

    Linear response theory for coupled phase oscillators with general coupling functions

    Get PDF
    We develop a linear response theory by computing the asymptotic value of the order parameter from the linearized equation of continuity around the nonsynchronized reference state using the Laplace transform in time. The proposed theory is applicable to a wide class of coupled phase oscillator systems and allows for any coupling functions, any natural frequency distributions, any phase-lag parameters, and any values for the time-delay parameter. This generality is in contrast to the limitation of the previous methods of the Ott–Antonsen ansatz and the self-consistent equation for an order parameter, which are restricted to a model family whose coupling function consists of only a single sinusoidal function. The theory is verified by numerical simulations

    Discovery of the transient magnetar 3XMM J185246.6+003317 near supernova remnant Kesteven 79 with XMM-Newton

    Full text link
    We report the serendipitous discovery with XMM-Newton that 3XMM J185246.6+003317 is an 11.56 s X-ray pulsar located 1' away from the southern boundary of supernova remnant Kes 79. The spin-down rate of 3XMM J185246.6+003317 is <1.1×1013<1.1\times 10^{-13} s s1^{-1}, which, together with the long period P=11.558714(2) s, indicates a dipolar surface magnetic field of 1.71.7 Myr, and a spin-down luminosity of <2.8×1030<2.8\times 10^{30} erg s1^{-1}. The X-ray spectrum of the source is best-fitted with a resonant Compton scattering model, and can be also adequately described by a blackbody model. The observations covering a seven month span from 2008 to 2009 show variations in the spectral properties of the source, with the luminosity decreasing from 2.7×10342.7\times 10^{34} erg s1^{-1} to 4.6×10334.6 \times 10^{33} erg s1^{-1}, along with a decrease of the blackbody temperature from kT0.8kT\approx 0.8 keV to 0.6\approx0.6 keV. The X-ray luminosity of the source is higher than its spin-down luminosity, ruling out rotation as a power source. The combined timing and spectral properties, the non-detection of any optical or infrared counterpart, together with the lack of detection of the source in archival X-ray data prior to the 2008 XMM-Newton observation, point to this source being a newly discovered transient low-B magnetar undergoing an outburst decay during the XMM-Newton observations. The non-detection by Chandra in 2001 sets an upper limit 4×10324\times 10^{32} erg s1^{-1} to the quiescent luminosity of 3XMM J185246.6+003317. Its period is the longest among currently known transient magnetars. The foreground absorption toward 3XMM J185246.6+003317 is similar to that of Kes 79, suggesting a similar distance of \sim7.1 kpc.Comment: 7 pages, 4 figures, 1 table; updated to match the published versio

    Contact metamorphism in the Malashan dome, North Himalayan gneiss domes, southern Tibet: An example of shallow extensional tectonics in the Tethys Himalaya

    Get PDF
    Combined petrographic, structural and geochronological study of the Malashan dome, one of the North Himalayan gneiss domes, reveals that it is cored by a Miocene granite, the Malashan granite, that intruded into the Jurassic sedimentary rocks of Tethys Himalaya. Two other granites in the area are referred to as the Paiku and Cuobu granites. New zircon SHRIMP U-Pb and muscovite and biotite 40Ar-39Ar dating show that the Paiku granite was emplaced during 22.2–16.2 Ma (average 19.3 ± 3.9 Ma) and cooled rapidly to 350–400 °C at around 15.9 Ma. Whole-rock granite chemistry suggests the original granitic magma may have formed by muscovite dehydration melting of a protolith chemically similar to the High Himalayan Crystalline Sequence. Abundant calcareous metasedimentary rocks and minor garnet-staurolite-biotite-muscovite ± andalusite schists record contact metamorphism by three granites that intruded intermittently into the Jurassic sediments between 18.5 and 15.3 Ma. Two stages of widespread penetrative ductile deformation, D1 and D2, can be defined. Microstructural studies of metapelites combined with geothermobarometry and pseudosection analyses yield P–T conditions of 4.8 ± 0.8 kbar at 550 ± 50 °C during a non-deformational stage between D1 and D2, and 3.1–4.1 kbar at 530–575 °C during syn- to post-D2. The pressure estimates for the syn- to post-D2 growth of andalusite suggest relatively shallow (depth of ∼15.2 km) extensional ductile deformation that took place within a shear zone of the South Tibetan Detachment System. Close temporal association between intrusion of the Malashan granite and onset of D2 suggests extension may have been triggered by the intrusion of the Malashan granite
    corecore