27 research outputs found

    Conceptual design of a sorption-based cryochain for the ETpathfinder

    Get PDF
    Next-generation gravitational wave detectors, including the Einstein Telescope [1] [2], aim to achieve amplitude-spectral-density strain sensitivities on the order 10−24m/Hz [3]. In the low-frequency band such sensitivities can only be obtained when thermal noise, mainly stemming from the mirror coating, is reduced by employing cryogenic cooling techniques for the mirrors. The optical surface of the mirror should not vibrate with strain noise amplitude spectral densities above 10−20m/Hz for the cryogenic mirrors in the Einstein Telescope [3]. The ETpathfinder research facility [4] [5], aims to facilitate the development and testing of critical new technologies required for the design and operation of future gravitational wave detectors. A key enabling technology for the design and operation of such advanced interferometers is the cryogenic system that cools the main optics to a temperature of approximately 10 K. Given the stringent requirements on vibrational noise for these optics, the cryogenic cooling under continuous operation should be essentially vibration free. Joule-Thomson cryocoolers using sorption compressors are known to generate an absolute minimum of vibrational noise during operation. We propose a modular cryochain design comprised of a system of sorption compressors and Joule-Thomson cold stages fitting the ETpathfinder project requirements. In this paper, we present the conceptual design of the cooler chain that is based on a parallel cascade arrangement of a 40 K neon stage, a 15 K hydrogen stage and a 8 K helium stage. The operating parameters of the sorption-based cooler chain are selected via a hybrid modeling workflow, aiming to optimize performance and other design considerations within an envelope of acceptable design parameters.</p

    Development of a switchless sorption compressor for the cryogenic refrigeration within the METIS instrument:Part I. Theoretical design

    Get PDF
    Vibration-free cryogenic sorption refrigerator was proposed for the Mid-infrared E-ELT Imager and Spectrograph (METIS) instrument in the European Extremely Large Telescope. Sorption compressor is the most important part in the refrigerator due to its dominate size, cost and complexity. Generally, gas-gap heat switches are applied for efficiency consideration which is particularly essential for space applications. In METIS refrigerator as a terrestrial application, low input powers, however, should not be the major concern, whereas complexity and costs become more important as high refrigeration powers and thus large numbers of sorption cells are required. To reduce these, we developed an alternative switchless sorption-compressor design. This paper presents the theoretical design of the switchless METIS sorption compressors, including the comparison between the designs with and without heat switches. Based on the switchless design, critical parameters for the METIS sorption compressors are determined to enable further development such as mechanical design, fabrication and experimental demonstration

    Development of a switchless sorption compressor for the cryogenic refrigeration within the METIS instrument:Part II. Experimental demonstration

    Get PDF
    Due to its vibration-free feature, sorption-based refrigeration technology has been proposed for the cryogenic cooling of the Mid-infrared E-ELT Imager and Spectrograph (METIS) instrument in the European Extremely Large Telescope. Sorption compressor is the most critical component in the METIS sorption refrigerator. A switchless sorption compressor has been designed for replacing the conventional gas-gap heat switch design. In this paper, the METIS switchless sorption compressor is validated in an experimental setup with a down-scaled version. The detailed design of the sorption compressor is introduced and the experimental setup is described. Then, the experimental procedures and results are discussed, including single-cell operation, multi-cell operation, and verification of the effects of the aluminum-foil inserts, the cycle time and the heat-sink temperature on the compressor performance. Finally, the experimental result showed good agreement with the simulations, and the deviation from the simulation to the measurement is caused by the model input inaccuracy

    Heat transfer at dielectric-metallic interfaces in the ultra-low temperature range

    Get PDF
    In the framework of the AEgIS project a series of steady state and dynamic heat transfer measurements at ultra-low temperatures was conducted in the Central Cryogenic Laboratory at CERN. Two sandwich setups, simulating the behaviour of ultra-cold AEgIS electrodes, were investigated and compared, namely: a sapphire − indium − copper and a sapphire − titanium − gold − indium − copper sandwich. The total thermal resistivity of both sandwich setups was evaluated as a function of the influence of normal and superconducting thin layers and multiple dielectric − metallic interfaces in terms of Kapitza resistance. The resulting limitations of the electrode’s design are presented

    Baseline design of a sorption-based Joule-Thomson cooler chain for the METIS instrument in the E-ELT

    Get PDF
    METIS, the Mid-Infrared E-ELT Imager and Spectrograph, is one of the proposed instruments in E-ELT (European Extremely Large Telescope). Its infrared detectors require multiple operating temperatures below 77 K. Therefore, active coolers have to be deployed to provide sub-liquid-nitrogen (sub-LN2) temperature cooling. However, the sensitive imaging optical detecting system also demands very low levels of vibration. Thus, the University of Twente proposed a vibration-free cooling technique based on physical sorption. In this paper, we describe the baseline design of such a sorption-based Joule-Thomson cooler chain for the METIS instrument, that is able to deliver cooling powers of 0.4 W at 8 K, 1.1 W at 25 K and 1.4 W at 40 K from a 70-K heat sinking. This design is based on working fluid selection, cascading cooler stages and operating parameter optimization. Also, the performance of the resulting cooler design is analyzed

    Adsorption isotherms and Sips models of nitrogen, methane, ethane, and propane on commercial activated carbons and polyvinylidene chloride

    Get PDF
    In this paper we present the measured isotherms of nitrogen, methane, ethane, and propane on three carbons: Norit RB2, Chemviron AP 4-60, and highly activated Saran. The measurements are taken at temperatures between 300 and 400 K, in 20 K steps. The measured data is fitted to the Sips adsorption model, where the Sips parameters are determined by a linearization method. The Sips parameters are further adjusted to realize a logic dependence on temperature and the parameter characteristics are discussed. Subsequently, the Sips model is modified to incorporate the temperature dependence. Including the temperature dependence results in a slightly higher error relative to the experimental results (typically 10 % as compared to 6 %). The immediate research product is a convenient expression for every adsorbate-adsorbent system which is discussed in this paper, for calculating the adsorption concentration as a function of temperature and pressure. A more general research product is a better understanding of the Sips parameter characteristics that should help in developing future adsorbents on demand

    Progress in and Outlook for Cryogenic Microcooling

    Get PDF
    Semiconductor-based devices in various fields such as night vision, space exploration, medical inspection, telecommunication, among others could benefit from operating at cryogenic temperatures. Besides, cryogenic temperatures also can offer some unique capabilities to superconducting devices, which are not available at ambient temperature. However, existing cryocoolers are oversized in terms of size and cooling power. Widespread use of these electronic devices requires cryocoolers that are small, low cost, low interference, and reliable. This review presents an overview of cooling cycles and discusses the opportunities and difficulties when adopting these cycles for realizing cryogenic temperatures above 1 K in microscale. It is found by comparison that, at present, fluid-based cryocoolers are more suitable for miniaturization. Concerning the miniaturization of fluid-based cryocoolers, emphasis is put on the effect that scaling has on the gross and net cooling power and on various parasitic losses, the microscale manufacturing technologies, and the state of the art of microcoolers. Some aspects that remain to be further developed for widespread use of cryogenic microcooling, are considered at the end of this review

    Modeling the adsorption of mixed gases based on pure gas adsorption properties

    Get PDF
    Sorption-based Joule-Thomson (JT) cryocoolers usually operate with pure gases. A sorption-based compressor has many benefits; however, it is limited by the pressure ratios it can provide. Using a mixed-refrigerant (MR) instead of a pure refrigerant in JT cryocoolers allows working at much lower pressure ratios. Therefore, it is attractive using MRs in sorption-based cryocoolers in order to reduce one of its main limitations. The adsorption of mixed gases is usually investigated under steady-state conditions, mainly for storage and separation processes. However, the process in a sorption compressor goes through various temperatures, pressures and adsorption concentrations; therefore, it differs from the common mixed gases adsorption applications. In order to simulate the sorption process in a compressor a numerical analysis for mixed gases is developed, based on pure gas adsorption characteristics. The pure gas adsorption properties have been measured for four gases (nitrogen, methane, ethane, and propane) with Norit-RB2 activated carbon. A single adsorption model is desired to describe the adsorption of all four gases. This model is further developed to a mixed-gas adsorption model. In future work more adsorbents will be tested using these four gases and the adsorption model will be verified against experimental results of mixed-gas adsorption measurements
    corecore