232 research outputs found

    Implicit Integration of Superpixel Segmentation into Fully Convolutional Networks

    Full text link
    Superpixels are a useful representation to reduce the complexity of image data. However, to combine superpixels with convolutional neural networks (CNNs) in an end-to-end fashion, one requires extra models to generate superpixels and special operations such as graph convolution. In this paper, we propose a way to implicitly integrate a superpixel scheme into CNNs, which makes it easy to use superpixels with CNNs in an end-to-end fashion. Our proposed method hierarchically groups pixels at downsampling layers and generates superpixels. Our method can be plugged into many existing architectures without a change in their feed-forward path because our method does not use superpixels in the feed-forward path but use them to recover the lost resolution instead of bilinear upsampling. As a result, our method preserves detailed information such as object boundaries in the form of superpixels even when the model contains downsampling layers. We evaluate our method on several tasks such as semantic segmentation, superpixel segmentation, and monocular depth estimation, and confirm that it speeds up modern architectures and/or improves their prediction accuracy in these tasks

    Adversarial Transformations for Semi-Supervised Learning

    Full text link
    We propose a Regularization framework based on Adversarial Transformations (RAT) for semi-supervised learning. RAT is designed to enhance robustness of the output distribution of class prediction for a given data against input perturbation. RAT is an extension of Virtual Adversarial Training (VAT) in such a way that RAT adversarialy transforms data along the underlying data distribution by a rich set of data transformation functions that leave class label invariant, whereas VAT simply produces adversarial additive noises. In addition, we verified that a technique of gradually increasing of perturbation region further improve the robustness. In experiments, we show that RAT significantly improves classification performance on CIFAR-10 and SVHN compared to existing regularization methods under standard semi-supervised image classification settings.Comment: Accepted by AAAI 202

    Drive Video Analysis for the Detection of Traffic Near-Miss Incidents

    Full text link
    Because of their recent introduction, self-driving cars and advanced driver assistance system (ADAS) equipped vehicles have had little opportunity to learn, the dangerous traffic (including near-miss incident) scenarios that provide normal drivers with strong motivation to drive safely. Accordingly, as a means of providing learning depth, this paper presents a novel traffic database that contains information on a large number of traffic near-miss incidents that were obtained by mounting driving recorders in more than 100 taxis over the course of a decade. The study makes the following two main contributions: (i) In order to assist automated systems in detecting near-miss incidents based on database instances, we created a large-scale traffic near-miss incident database (NIDB) that consists of video clip of dangerous events captured by monocular driving recorders. (ii) To illustrate the applicability of NIDB traffic near-miss incidents, we provide two primary database-related improvements: parameter fine-tuning using various near-miss scenes from NIDB, and foreground/background separation into motion representation. Then, using our new database in conjunction with a monocular driving recorder, we developed a near-miss recognition method that provides automated systems with a performance level that is comparable to a human-level understanding of near-miss incidents (64.5% vs. 68.4% at near-miss recognition, 61.3% vs. 78.7% at near-miss detection).Comment: Accepted to ICRA 201
    • …
    corecore