17 research outputs found

    Expedition 376 summary

    Get PDF
    Volcanic arcs are the surface expression of magmatic systems that result from subduction of mostly oceanic lithosphere at convergent plate boundaries. Arcs with a submarine component include intraoceanic arcs and island arcs that span almost 22,000 km on Earth’s surface, and the vast majority of them are located in the Pacific region. Hydrothermal systems hosted by submarine arc volcanoes commonly contain a large component of magmatic fluid. This magmatic-hydrothermal signature, coupled with the shallow water depths of arc volcanoes and their high volatile contents, strongly influences the chemistry of the fluids and resulting mineralization and likely has important consequences for the biota associated with these systems. The high metal content and very acidic fluids in these hydrothermal systems are thought to be important analogs to numerous porphyry copper and epithermal gold deposits mined today on land. During International Ocean Discovery Program (IODP) Expedition 376 (5 May–5 July 2018), a series of five sites was drilled on Brothers volcano in the Kermadec arc. The expedition was designed to provide the missing link (i.e., the third dimension) in our understanding of hydrothermal activity and mineral deposit formation at submarine arc volcanoes and the relationship between the discharge of magmatic fluids and the deep biosphere. Brothers volcano hosts two active and distinct hydrothermal systems: one is seawater influenced and the other is affected by magmatic fluids (largely gases). In total, 222.4 m of volcaniclastics and lavas were recovered from the five sites drilled, which include Sites U1527 and U1530 in the Northwest (NW) Caldera seawater-influenced hydrothermal field; Sites U1528 and U1531 in the magmatic fluid-influenced hydrothermal fields of the Upper and Lower Cones, respectively; and Site U1529, located within an area of low crustal magnetization that marks the West (W) Caldera upflow zone on the caldera floor. Downhole logging and borehole fluid sampling were completed at two sites, and two tests of a prototype turbine-driven coring system (designed by the Center for Deep Earth Exploration [CDEX] at Japan Agency for Marine-Earth Science and Technology [JAMSTEC]) for drilling and coring hard rocks were conducted. Core recovered from all five sites consists of dacitic volcaniclastics and lava flows with only limited chemical variability relative to the overall range in composition of dacites in the Kermadec arc. Pervasive alteration with complex and variable mineral assemblages attest to a highly dynamic hydrothermal system. The upper parts of several drill holes at the NW Caldera hydrothermal field are characterized by secondary mineral assemblages of goethite + opal + zeolites that result from low-temperature (<150°C) reaction of rock with seawater. At depth, NW Caldera Site U1527 exhibits a higher temperature (~250°C) secondary mineral assemblage dominated by chlorite + quartz + illite + pyrite. An older mineral assemblage dominated by diaspore + quartz + pyrophyllite + rutile at the bottom of Hole U1530A is indicative of acidic fluids with temperatures of ~230°–320°C. In contrast, the alteration assemblage at Site U1528 on the Upper Cone is dominated by illite + natroalunite + pyrophyllite + quartz + opal + pyrite, which attests to high-temperature reaction of rocks with acid-sulfate fluids derived from degassed magmatic volatiles and the disproportionation of magmatic SO2. These intensely altered rocks exhibit extreme depletion of major cation oxides, such as MgO, K2O, CaO, MnO, and Na2O. Furthermore, very acidic (as low as pH 1.8), relatively hot (≀236°C) fluids collected at 160, 279, and 313 meters below seafloor in Hole U1528D have chemical compositions indicative of magmatic gas input. In addition, preliminary fluid inclusion data provide evidence for involvement of two distinct fluids: phase-separated (modified) seawater and a ~360°C hypersaline brine, which alters the volcanic rock and potentially transports metals in the system. The material and data recovered during Expedition 376 provide new stratigraphic, lithologic, and geochemical constraints on the development and evolution of Brothers volcano and its hydrothermal systems. Insights into the consequences of the different types of fluid–rock reactions for the microbiological ecosystem elucidated by drilling at Brothers volcano await shore-based studies

    Closed- to open-system differentiation at Arenal volcano (1968-2003)

    No full text
    Arenal volcano, located in northern Costa Rica, has been continuously erupting since 1968. Magmas during the first half of the eruption by volume (Stage 1: 1968–1971) were related by largely closed-system crystal fractionation that had produced a compositionally zoned magma chamber prior to 1968. It erupted downward from the most differentiated magma in 1968 to the most mafic by early 1971. In contrast, the second half of the eruption has been dominated by recharge and compositions have become more evolved with time (Stage 2: 1971–current). We base these conclusions on new major and trace element plus Sr–Nd–Hf–Pb isotope analyses of 56 whole rocks from throughout the eruption. Differentiates are enriched in incompatible elements in both stages, but compatible element concentrations drop much more during Stage 1 than 2. Changes during Stage 1 were successfully modeled using least squares and MELTS models despite the mineral complexity of the rocks. About 19% fractional crystallization of phenocryst phases (plagioclase \u3e orthopyroxene \u3e clinopyroxene \u3e magnetite) is required, consistent with crystallization at 4 kb and from 1145 to 1088 °C of a melt initially containing 2.5 wt.% H2O at quite oxidizing conditions (QFM + 2). An implication is that most phenocrysts formed during decompression and degassing. Changes during the second stage were successfully modeled using EC-Eâ€ČRAχFC with the ratio of recharge to crystallization decreasing from 17 to 5 over ∌ 30 years. Crystallization rates (dFS / dt) increase from 0.05 to 0.4%/a from closed- to open-system behavior and are even faster than inferred from U-series disequilibria. The recharging magma results from a smaller degree of flux melting of a mostly similar source than for the resident magma prior to the eruption, with the two events separated by ∌ 450 years. The most recent compositions have no precedent at Arenal
    corecore