44 research outputs found

    Organogenesis: keeping in touch with the germ cells

    Get PDF
    AbstractDE-cadherin and its novel regulator, the transmembrane protein Fear of Intimacy, have been found to control the adhesive interactions between germline and somatic cells that lead to gonad formation in Drosophila

    Cdc42 and Par proteins stabilize dynamic adherens junctions in the Drosophila neuroectoderm through regulation of apical endocytosis

    Get PDF
    Cell rearrangements require dynamic changes in cell–cell contacts to maintain tissue integrity. We investigated the function of Cdc42 in maintaining adherens junctions (AJs) and apical polarity in the Drosophila melanogaster neuroectodermal epithelium. About one third of cells exit the epithelium through ingression and become neuroblasts. Cdc42-compromised embryos lost AJs in the neuroectoderm during neuroblast ingression. In contrast, when neuroblast formation was suppressed, AJs were maintained despite the loss of Cdc42 function. Loss of Cdc42 function caused an increase in the endocytotic uptake of apical proteins, including apical polarity factors such as Crumbs, which are required for AJ stability. In addition, Cdc42 has a second function in regulating endocytotic trafficking, as it is required for the progression of apical cargo from the early to the late endosome. The Par complex acts as an effector for Cdc42 in controlling the endocytosis of apical proteins. This study reveals functional interactions between apical polarity proteins and endocytosis that are critical for stabilizing dynamic basolateral AJs

    Gliotactin, a novel marker of tricellular junctions, is necessary for septate junction development in Drosophila

    Get PDF
    Septate junctions (SJs), similar to tight junctions, function as transepithelial permeability barriers. Gliotactin (Gli) is a cholinesterase-like molecule that is necessary for blood–nerve barrier integrity, and may, therefore, contribute to SJ development or function. To address this hypothesis, we analyzed Gli expression and the Gli mutant phenotype in Drosophila epithelia. In Gli mutants, localization of SJ markers neurexin-IV, discs large, and coracle are disrupted. Furthermore, SJ barrier function is lost as determined by dye permeability assays. These data suggest that Gli is necessary for SJ formation. Surprisingly, Gli distribution only colocalizes with other SJ markers at tricellular junctions, suggesting that Gli has a unique function in SJ development. Ultrastructural analysis of Gli mutants supports this notion. In contrast to other SJ mutants in which septa are missing, septa are present in Gli mutants, but the junction has an immature morphology. We propose a model, whereby Gli acts at tricellular junctions to bind, anchor, or compact SJ strands apically during SJ development

    Essential function of Drosophila Sec6 in apical exocytosis of epithelial photoreceptor cells

    Get PDF
    Polarized exocytosis plays a major role in development and cell differentiation but the mechanisms that target exocytosis to specific membrane domains in animal cells are still poorly understood. We characterized Drosophila Sec6, a component of the exocyst complex that is believed to tether secretory vesicles to specific plasma membrane sites. sec6 mutations cause cell lethality and disrupt plasma membrane growth. In developing photoreceptor cells (PRCs), Sec6 but not Sec5 or Sec8 shows accumulation at adherens junctions. In late PRCs, Sec6, Sec5, and Sec8 colocalize at the rhabdomere, the light sensing subdomain of the apical membrane. PRCs with reduced Sec6 function accumulate secretory vesicles and fail to transport proteins to the rhabdomere, but show normal localization of proteins to the apical stalk membrane and the basolateral membrane. Furthermore, we show that Rab11 forms a complex with Sec5 and that Sec5 interacts with Sec6 suggesting that the exocyst is a Rab11 effector that facilitates protein transport to the apical rhabdomere in Drosophila PRCs

    Sinuous is a Drosophila claudin required for septate junction organization and epithelial tube size control

    Get PDF
    Epithelial tubes of the correct size and shape are vital for the function of the lungs, kidneys, and vascular system, yet little is known about epithelial tube size regulation. Mutations in the Drosophila gene sinuous have previously been shown to cause tracheal tubes to be elongated and have diameter increases. Our genetic analysis using a sinuous null mutation suggests that sinuous functions in the same pathway as the septate junction genes neurexin and scribble, but that nervana 2, convoluted, varicose, and cystic have functions not shared by sinuous. Our molecular analyses reveal that sinuous encodes a claudin that localizes to septate junctions and is required for septate junction organization and paracellular barrier function. These results provide important evidence that the paracellular barriers formed by arthropod septate junctions and vertebrate tight junctions have a common molecular basis despite their otherwise different molecular compositions, morphologies, and subcellular localizations

    Epithelial cell polarity and cell junctions in drosophila

    Get PDF
    The polarized architecture of epithelial cells and tissues is a fundamental determinant of animal anatomy and physiology. Recent progress made in the genetic and molecular analysis of epithelial polarity and cellular junctions in Drosophila has led to the most detailed understanding of these processes in a whole animal model system to date. Asymmetry of the plasma membrane and the differentiation of membrane domains and cellular junctions are controlled by protein complexes that assemble around transmembrane proteins such as DE-cadherin, Crumbs, and Neurexin IV, or other cytoplasmic protein complexes that associate with the plasma membrane. Much remains to be learned of how these complexes assemble, establish their polarized distribution, and contribute to the asymmetric organization of epithelial cells

    Force-dependent allostery of the α-catenin actinbinding domain controls adherens junction dynamics and functions

    Get PDF
    α-catenin is a key mechanosensor that forms force-dependent interactions with F-actin, thereby coupling the cadherin-catenin complex to the actin cytoskeleton at adherens junctions (AJs). However, the molecular mechanisms by which α-catenin engages F-actin under tension remained elusive. Here we show that the α1-helix of the α-catenin actin-binding domain (αcat-ABD) is a mechanosensing motif that regulates tension-dependent F-actin binding and bundling. αcat-ABD containing an α1-helix-unfolding mutation (H1) shows enhanced binding to F-actin in vitro. Although full-length α-catenin-H1 can generate epithelial monolayers that resist mechanical disruption, it fails to support normal AJ regulation in vivo. Structural and simulation analyses suggest that α1-helix allosterically controls the actin-binding residue V796 dynamics. Crystal structures of αcat-ABD-H1 homodimer suggest that α-catenin can facilitate actin bundling while it remains bound to E-cadherin. We propose that force-dependent allosteric regulation of αcat-ABD promotes dynamic interactions with F-actin involved in actin bundling, cadherin clustering, and AJ remodeling during tissue morphogenesis

    Endocytic and Recycling Endosomes Modulate Cell Shape Changes and Tissue Behaviour during Morphogenesis in Drosophila

    Get PDF
    During development tissue deformations are essential for the generation of organs and to provide the final form of an organism. These deformations rely on the coordination of individual cell behaviours which have their origin in the modulation of subcellular activities. Here we explore the role endocytosis and recycling on tissue deformations that occur during dorsal closure of the Drosophila embryo. During this process the AS contracts and the epidermis elongates in a coordinated fashion, leading to the closure of a discontinuity in the dorsal epidermis of the Drosophila embryo. We used dominant negative forms of Rab5 and Rab11 to monitor the impact on tissue morphogenesis of altering endocytosis and recycling at the level of single cells. We found different requirements for endocytosis (Rab5) and recycling (Rab11) in dorsal closure, furthermore we found that the two processes are differentially used in the two tissues. Endocytosis is required in the AS to remove membrane during apical constriction, but is not essential in the epidermis. Recycling is required in the AS at early stages and in the epidermis for cell elongation, suggesting a role in membrane addition during these processes. We propose that the modulation of the balance between endocytosis and recycling can regulate cellular morphology and tissue deformations during morphogenesis
    corecore