8 research outputs found

    Evolution of satellite navigation: advanced applications in ground, air and space contexts

    No full text
    Per migliaia di anni i navigatori hanno osservato il cielo per orientarsi, affidandosi al proprio senso di orientamento, a mappe e segnali. Con il passare dei secoli differenti tecniche di navigazione sono andate evolvendosi fra le varie culture, ma tutte si fondavano sullo stesso principio base: la comparazione della propria posizione con punti noti o schemi prestabiliti. Oggigiorno la navigazione è cambiata, dall’utilizzo di oggetti naturali si è passati all’impiego di satelliti artificiali. L’idea di servirsi di satelliti per scopi di navigazione è nata dall’esperienza sulla propagazione delle onde elettromagnetiche nello spazio acquisita con la missione Sputnik 1, avvenuta nell’Ottobre del 1957. Da allora in poi, numerosi passi in avanti sono stati fatti. Sistemi Satellitari di Navigazione Globale (Global Navigation Satellite Systems – GNSS), quali il GPS e il GLONASS, e relativi sistemi di Augmentation sono attualmente operativi, mentre, nei prossimi anni, Sistemi Satellitari di Navigazione Globale di Seconda Generazione (GNSS-2), principalmente caratterizzati dai sistemi GALILEO e GPS III, saranno dispiegati. Sia il GPS che il GLONASS sono stati sviluppati nel corso della guerra fredda fra USA e URSS e quindi originariamente ideati per scopi prettamente militari. Nel corso degli anni, questi sistemi, in particolare il GPS, si sono evoluti ben oltre le loro origini, fornendo servizi di navigazione sia per utenti di tipo militare che civile. In particolare, il notevole miglioramento della accuratezza, ottenuto nel 2000 in seguito alla decisione di rimuovere la Disponibilità Selettiva (Selective Availability – SA), ha incoraggiato il favore e l’integrazione del GPS verso applicazioni pacifiche ed ha stimolato, al tempo stesso, il settore privato ad investire ed utilizzare tecnologie e servizi GPS. L’aspetto più affascinante della navigazione satellitare è rappresentato dalla sua versatilità di applicazione, ovvero dalla capacità di supportare una vasta gamma di possibili applicazioni. Di conseguenza, i sistemi GNSS hanno trovato applicazione in molti campi civili, scientifici e commerciali ed un numero ancor maggiore è atteso per gli anni a venire. Infatti, i futuri sistemi GNSS-2 consentiranno l’implementazione di innovativi servizi ed applicazioni, sempre più vicini ai bisogni dell’utente. I sistemi GNSS-2, quindi, contribuiranno significativamente ad incrementare la presenza di servizi/sistemi basati sulla navigazione satellitare in molti campi della vita dell’uomo, aree safety-critical comprese. In un tale contesto, la presente Tesi di Dottorato studia l’evoluzione dei sistemi GNSS e ne esplora ambiziose ed innovative applicazioni in contesti terrestri, aerei e spaziali. L’obiettivo principale è quello di evidenziare il crescente e strategico ruolo che rivestirà la navigazione satellitare nella Società futura. Particolare enfasi è posta sulle applicazioni aeree, in particolare sul settore dell’aviazione civile, in cui i continui miglioramenti nei sistemi GNSS, in particolare in termini di accuratezza, hanno aperto nuove importanti prospettive ed opportunità per l’uso di queste tecnologie.Navigators have looked to the sky for direction for thousands of years, relying on human sense of direction, maps and signs. Different navigational techniques have evolved over the ages in different cultures, but all involve locating one's position compared to known locations or patterns. Today, celestial navigation has switched from natural objects to artificial satellites. The idea of using satellites for navigation began with the launch of Sputnik 1 on October 4, 1957. From then on, several steps ahead have been performed. Global Navigation Satellite Systems (GNSS) constellations, i.e. GPS and GLONASS, and related augmentation systems are presently operational, while in the next few years, the so-called Global Navigation Satellite Systems of Second Generation (GNSS-2), mainly characterised by the European GALILEO and the American GPS III, will be deployed. Both GPS and GLONASS were developed during the cold war between USA and USSR and, thereby, originally thought for military purposes. Over the years, these systems, especially the GPS, have evolved far beyond their military origins, providing navigation services to both military and civilian users. In particular, the significant accuracy improvement resulted from the removal of the Selective Availability (SA) in 2000 has encouraged acceptance and integration of GPS into peaceful applications and has stimulated, at the same time, the private sector in investing and using GPS technologies and services. The most fascinating feature of satellite navigation is its potential to cover a wide range of applications. As a consequence, GNSS have found application in a wide range of civil, scientific, and commercial fields and even more are expected in the future. Future GNSS-2 and related advanced capabilities, in fact, will enable the implementation of innovative services and applications more and more close to the user needs. Therefore, GNSS-2 will significantly contribute to increase the penetration of the GNSS services in most fields of the human life, including safety-critical areas. In this framework, this Ph.D. dissertation studies GNSS evolution and explores challenging and innovative applications of satellite navigation in Ground, Air and Space contexts. The overall aim is to provide evidence of the growing and strategic role that satellite navigation will play in the World Community in the coming years. Special emphasis is put on air segment, specifically on the civil aviation sector, where, in order to address the future traffic demand, the continuous improvements in satellite navigation systems, especially in terms of accuracy performance, have been opening new perspectives and opportunities for the use of these technologies in the Air Traffic Management (ATM) system

    Evolution of satellite navigation: advanced applications in ground, air and space contexts

    No full text
    Per migliaia di anni i navigatori hanno osservato il cielo per orientarsi, affidandosi al proprio senso di orientamento, a mappe e segnali. Con il passare dei secoli differenti tecniche di navigazione sono andate evolvendosi fra le varie culture, ma tutte si fondavano sullo stesso principio base: la comparazione della propria posizione con punti noti o schemi prestabiliti. Oggigiorno la navigazione è cambiata, dall’utilizzo di oggetti naturali si è passati all’impiego di satelliti artificiali. L’idea di servirsi di satelliti per scopi di navigazione è nata dall’esperienza sulla propagazione delle onde elettromagnetiche nello spazio acquisita con la missione Sputnik 1, avvenuta nell’Ottobre del 1957. Da allora in poi, numerosi passi in avanti sono stati fatti. Sistemi Satellitari di Navigazione Globale (Global Navigation Satellite Systems – GNSS), quali il GPS e il GLONASS, e relativi sistemi di Augmentation sono attualmente operativi, mentre, nei prossimi anni, Sistemi Satellitari di Navigazione Globale di Seconda Generazione (GNSS-2), principalmente caratterizzati dai sistemi GALILEO e GPS III, saranno dispiegati. Sia il GPS che il GLONASS sono stati sviluppati nel corso della guerra fredda fra USA e URSS e quindi originariamente ideati per scopi prettamente militari. Nel corso degli anni, questi sistemi, in particolare il GPS, si sono evoluti ben oltre le loro origini, fornendo servizi di navigazione sia per utenti di tipo militare che civile. In particolare, il notevole miglioramento della accuratezza, ottenuto nel 2000 in seguito alla decisione di rimuovere la Disponibilità Selettiva (Selective Availability – SA), ha incoraggiato il favore e l’integrazione del GPS verso applicazioni pacifiche ed ha stimolato, al tempo stesso, il settore privato ad investire ed utilizzare tecnologie e servizi GPS. L’aspetto più affascinante della navigazione satellitare è rappresentato dalla sua versatilità di applicazione, ovvero dalla capacità di supportare una vasta gamma di possibili applicazioni. Di conseguenza, i sistemi GNSS hanno trovato applicazione in molti campi civili, scientifici e commerciali ed un numero ancor maggiore è atteso per gli anni a venire. Infatti, i futuri sistemi GNSS-2 consentiranno l’implementazione di innovativi servizi ed applicazioni, sempre più vicini ai bisogni dell’utente. I sistemi GNSS-2, quindi, contribuiranno significativamente ad incrementare la presenza di servizi/sistemi basati sulla navigazione satellitare in molti campi della vita dell’uomo, aree safety-critical comprese. In un tale contesto, la presente Tesi di Dottorato studia l’evoluzione dei sistemi GNSS e ne esplora ambiziose ed innovative applicazioni in contesti terrestri, aerei e spaziali. L’obiettivo principale è quello di evidenziare il crescente e strategico ruolo che rivestirà la navigazione satellitare nella Società futura. Particolare enfasi è posta sulle applicazioni aeree, in particolare sul settore dell’aviazione civile, in cui i continui miglioramenti nei sistemi GNSS, in particolare in termini di accuratezza, hanno aperto nuove importanti prospettive ed opportunità per l’uso di queste tecnologie.Navigators have looked to the sky for direction for thousands of years, relying on human sense of direction, maps and signs. Different navigational techniques have evolved over the ages in different cultures, but all involve locating one's position compared to known locations or patterns. Today, celestial navigation has switched from natural objects to artificial satellites. The idea of using satellites for navigation began with the launch of Sputnik 1 on October 4, 1957. From then on, several steps ahead have been performed. Global Navigation Satellite Systems (GNSS) constellations, i.e. GPS and GLONASS, and related augmentation systems are presently operational, while in the next few years, the so-called Global Navigation Satellite Systems of Second Generation (GNSS-2), mainly characterised by the European GALILEO and the American GPS III, will be deployed. Both GPS and GLONASS were developed during the cold war between USA and USSR and, thereby, originally thought for military purposes. Over the years, these systems, especially the GPS, have evolved far beyond their military origins, providing navigation services to both military and civilian users. In particular, the significant accuracy improvement resulted from the removal of the Selective Availability (SA) in 2000 has encouraged acceptance and integration of GPS into peaceful applications and has stimulated, at the same time, the private sector in investing and using GPS technologies and services. The most fascinating feature of satellite navigation is its potential to cover a wide range of applications. As a consequence, GNSS have found application in a wide range of civil, scientific, and commercial fields and even more are expected in the future. Future GNSS-2 and related advanced capabilities, in fact, will enable the implementation of innovative services and applications more and more close to the user needs. Therefore, GNSS-2 will significantly contribute to increase the penetration of the GNSS services in most fields of the human life, including safety-critical areas. In this framework, this Ph.D. dissertation studies GNSS evolution and explores challenging and innovative applications of satellite navigation in Ground, Air and Space contexts. The overall aim is to provide evidence of the growing and strategic role that satellite navigation will play in the World Community in the coming years. Special emphasis is put on air segment, specifically on the civil aviation sector, where, in order to address the future traffic demand, the continuous improvements in satellite navigation systems, especially in terms of accuracy performance, have been opening new perspectives and opportunities for the use of these technologies in the Air Traffic Management (ATM) system

    Higher-Level Services of an Advanced Surface Movement Guidance and Control Systems (A-SMGCS)

    No full text
    The high number of runway incursions and weather dependent airport throughput occurrences has led to the development of an Advanced Surface Movement Guidance and Control System (A-SMGCS). The basic levels of A-SMGCS 1&2 support mainly tower air traffic controllers through the provision of a weather independent complete traffic situation and a basic runway safety net. A high-level A-SMGCS will support controllers as well as pilots and vehicle drivers with services for surveillance, control, routing/planning and guidance in a holistic manner. In 2004 ICAO published the A-SMGCS manual (Document 9830), which describes operational, functional and performance requirements. However, at this time, procedures and operational requirements for the higher levels of A-SMGCS were relatively immature or inexistent. The present paper addresses higher level services of an A-SMGCS, in particular routing, departure management (DMAN), advanced runway safety nets (A-RSN), data link communication (TAXI-CPDLC), and onboard guidance. Under the umbrella of EMMA2 (European Airport Management by A-SMGCS, part two), an Integrated Project of the 6th European framework programme, a holistic A-SMGCS concept that included procedures and requirements was developed. This concept was tested in extensive simulation and field trials at four European airports (Prague Ruzyne, Milan Malpensa, Toulouse Blagnac and Paris Charles de Gaulle), using diverse technical solutions and test platforms. The most important results and recommendations are presented in this paper. They provide feedback regarding their operational feasibility in general, and new procedures and requirements in particular. These results represent an important milestone to support ongoing research in SESAR and NextGen

    EMMA2: Airport surface: Runway incorsion ATSA-SURF

    No full text
    RWY incursions are a major safety issue, growing larger as a result of the traffic increase. An accident is simply "unacceptable" by all stakeholders. The runway incursion problem can be reduced with a combination of technologies that greatly enhance pilot situational awareness and provide conflict alerting to air traffic controllers and pilots

    Validation Comparative Analysis Report

    Get PDF
    The document starts with a table for quick and easy reference, so that there is a clear link between a certain test site, the validated services, the validation platform and technique used, and the respective chapter in this document (Chapter 2). In general, this document has been structured in accordance with the EMMA2 SPOR document and it separates the validated A-SMGCS services into air traffic controller (Chapter 3), flight crew (Chapter 4), and vehicle driver services (Chapter 5). Within each of these service categories A-SMGCS is divided into surveillance, control, routing and planning, and guidance services. Results are then presented for each of the test sites that validated the service under consideration, which allows for comparing the results and analysing them in a more coherent way. In order to give a better overview of the manifold results, Chapter 6 will summarise them, highlight the most outstanding issues in comparing and analysing them and present the lessons learnt in conclusion. Thus, the document serves as input for the EMMA2 recommendations

    A-SMGCS Services, Procedures, and Operational Requirements (SPOR)

    Get PDF
    The 2-D1.1.1 ’A-SMGCS Services, Procedures, and Operational Requirements (SPOR)’ document is one of four main conceptual documents of the EMMA2 subproject 1 (SP1). The SPOR document is the central concept document within the EMMA2 project. It expresses an extensive and innovative operational concept in the field of A-SMGCS in terms of a description of: - A-SMGCS Services (§2) - related Procedures, and (§3) - Operational Requirements (§4)
    corecore