3,316 research outputs found

    Opinion diversity and community formation in adaptive networks

    Full text link
    It is interesting and of significant importance to investigate how network structures co-evolve with opinions. The existing models of such co-evolution typically lead to the final states where network nodes either reach a global consensus or break into separated communities, each of which holding its own community consensus. Such results, however, can hardly explain the richness of real-life observations that opinions are always diversified with no global or even community consensus, and people seldom, if not never, totally cut off themselves from dissenters. In this article, we show that, a simple model integrating consensus formation, link rewiring and opinion change allows complex system dynamics to emerge, driving the system into a dynamic equilibrium with co-existence of diversified opinions. Specifically, similar opinion holders may form into communities yet with no strict community consensus; and rather than being separated into disconnected communities, different communities remain to be interconnected by non-trivial proportion of inter-community links. More importantly, we show that the complex dynamics may lead to different numbers of communities at steady state with a given tolerance between different opinion holders. We construct a framework for theoretically analyzing the co-evolution process. Theoretical analysis and extensive simulation results reveal some useful insights into the complex co-evolution process, including the formation of dynamic equilibrium, the phase transition between different steady states with different numbers of communities, and the dynamics between opinion distribution and network modularity, etc.Comment: 12 pages, 8 figures, Journa

    Ion trap long-range XY model for quantum state transfer and optimal spatial search

    Get PDF
    Linear ion trap chains are a promising platform for quantum computation and simulation. The XY model with long-range interactions can be implemented with a single side-band Mølmer–Sørensen scheme, giving interactions that decay as 1/r α, where α parameterises the interaction range. Lower α leads to longer range interactions, allowing faster long-range gate operations for quantum computing. However, decreasing α causes an increased generation of coherent phonons and appears to dephase the effective XY interaction model. We characterise and show how to correct for this effect completely, allowing lower α interactions to be coherently implemented. Ion trap chains are thus shown to be a viable platform for spatial quantum search in optimal O( √ N) time, for N ions. Finally, we introduce a O( √ N) quantum state transfer protocol, with a qubit encoding that maintains a high fidelity

    Modeling the dynamic rupture propagation on heterogeneous faults with rate- and state-dependent friction

    Get PDF
    We investigate the effects of non-uniform distribution of constitutive parameters on the dynamic propagation of an earthquake rupture. We use a 2D finite difference numerical method and we assume that the dynamic rupture propagation is governed by a rate- and state-dependent constitutive law. We first discuss the results of several numerical experiments performed with different values of the constitutive parameters a (to account for the direct effect of friction), b (controlling the friction evolution) and L (the characteristic length-scale parameter) to simulate the dynamic rupture propagation on homogeneous faults. Spontaneous dynamic ruptures can be simulated on velocity weakening (a < b) fault patches: our results point out the dependence of the traction and slip velocity evolution on the adopted constitutive parameters. We therefore model the dynamic rupture propagation on heterogeneous faults. We use in this study the characterization of different frictional regimes proposed by Boatwright and Cocco (1996) based on different values of the constitutive parameters a, b and L. Our numerical simulations show that the heterogeneities of the L parameter affect the dynamic rupture propagation, control the peak slip velocity and weakly modify the dynamic stress drop and the rupture velocity. Moreover, a barrier can be simulated through a large contrast of L parameter. The heterogeneity of a and b parameters affects the dynamic rupture propagation in a more complex way. A velocity strengthening area (a > b) can arrest a dynamic rupture, but can be driven to an instability if suddenly loaded by the dynamic rupture front. Our simulations provide a picture of the complex interactions between fault patches having different frictional properties and illustrate how the traction and slip velocity evolutions are modified during the propagation on heterogeneous faults. These results involve interesting implications for slip duration and fracture energy

    Inhibitory role of peroxisome proliferator-activated receptor gamma in hepatocarcinogenesis in mice and in vitro

    Get PDF
    Although peroxisome proliferator-activated receptor gamma (PPARγ) agonist have been shown to inhibit hepatocellular carcinoma (HCC) development, the role of PPARγ in hepatocarcinogenesis remains unclear. We investigated the therapeutic efficacy of PPAR

    EXACT RUN LENGTH DISTRIBUTION OF THE DOUBLE SAMPLING X CHART WITH ESTIMATED PROCESS PARAMETERS

    Get PDF
    Since the run length distribution is generally highly skewed, a significant concern about focusing too much on the average run length (ARL) criterion is that we may miss some crucial information about a control chart’s performance. Thus it is important to investigate the entire run length distribution of a control chart for an in-depth understanding before implementing the chart in process monitoring. In this paper, the percentiles of the run length distribution for the double sampling (DS) X chart with estimated process parameters are computed. Knowledge of the percentiles of the run length distribution provides a more comprehensive understanding of the expected behaviour of the run length. This additional information includes the early false alarm, the skewness of the run length distribution, and the median run length (MRL). A comparison of the run length distribution between the optimal ARL-based and MRL-based DS X chart with estimated process parameters is presented in this paper. Examples of applications are given to aid practitioners to select the best design scheme of the DS X chart with estimated process parameters, based on their specific purpose

    EXACT RUN LENGTH DISTRIBUTION OF THE DOUBLE SAMPLING X CHART WITH ESTIMATED PROCESS PARAMETERS

    Get PDF
    Since the run length distribution is generally highly skewed, a significant concern about focusing too much on the average run length (ARL) criterion is that we may miss some crucial information about a control chart’s performance. Thus it is important to investigate the entire run length distribution of a control chart for an in-depth understanding before implementing the chart in process monitoring. In this paper, the percentiles of the run length distribution for the double sampling (DS) X chart with estimated process parameters are computed. Knowledge of the percentiles of the run length distribution provides a more comprehensive understanding of the expected behaviour of the run length. This additional information includes the early false alarm, the skewness of the run length distribution, and the median run length (MRL). A comparison of the run length distribution between the optimal ARL-based and MRL-based DS X chart with estimated process parameters is presented in this paper. Examples of applications are given to aid practitioners to select the best design scheme of the DS X chart with estimated process parameters, based on their specific purpose

    Predictors of allergen sensitization in Singapore children from birth to 3 years

    Get PDF
    10.1186/s13223-016-0161-xAllergy, asthma, and clinical immunology : official journal of the Canadian Society of Allergy and Clinical Immunology121Article number 56GUSTO (Growing up towards Healthy Outcomes

    Outpatient-Based Therapy of Oral Fludarabine and Subcutaneous Alemtuzumab for Asian Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia

    Get PDF
    Background. Intravenous alemtuzumab and fludarabine are effective in combination for the treatment of chronic lymphocytic leukemia (CLL), but require hospital visits for intravenous injection. We performed a pilot study to assess the safety and efficacy of outpatient-based oral fludarabine with subcutaneous alemtuzumab (OFSA) for the treatment of relapsed/refractory CLL. Results. Depending on their response, patients were given two to six 28-day cycles of subcutaneous alemtuzumab 30 mg on days 1,3, and 5 and oral fludarabine 40 mg/m2/day for 5 days. Median patient age was 74. The lymphocyte counts of all five patients fell after the 1st cycle of treatment and reached normal/low levels on completion of 2 to 6 cycles of therapy. Platelet counts and hemoglobin were unaffected. All five patients achieved complete hematological remission, while two attained minimal residual disease negativity on 4-color flow cytometry. Conclusions. Our OFSA regimen was effective in elderly Asian patients with relapsed/refractory CLL, and it should be investigated further

    Nanocasting Synthesis of Ultrafine WO3 Nanoparticles for Gas Sensing Applications

    Get PDF
    Ultrafine WO3 nanoparticles were synthesized by nanocasting route, using mesoporous SiO2 as a template. BET measurements showed a specific surface area of 700 m 2/gr for synthesized SiO2, while after impregnation and template removal, this area was reduced to 43 m 2/gr for WO3 nanoparticles. HRTEM results showed single crystalline nanoparticles with average particle size of about 5 nm possessing a monoclinic structure, which is the favorite crystal structure for gas sensing applications. Gas sensor was fabricated by deposition of WO3 nanoparticles between electrodes via low frequency AC electrophoretic deposition. Gas sensing measurements showed that this material has a high sensitivity to very low concentrations of NO2 at 250°C and 300°C
    corecore