5 research outputs found

    Intestinal Taxa Abundance and Diversity in Inflammatory Bowel Disease Patients: An Analysis including Covariates and Confounders

    Get PDF
    Intestinal dysbiosis has been widely documented in inflammatory bowel diseases (IBDs) and is thought to influence the onset and perpetuation of gut inflammation. However, it remains unclear whether such bacterial changes rely in part on the modification of an IBD-associated lifestyle (e.g., smoking and physical activity) and diet (e.g., rich in dairy products, cereals, meat and vegetables). In this study, we investigated the impact of these habits, which we defined as confounders and covariates, on the modulation of intestinal taxa abundance and diversity in IBD patients. 16S rRNA gene sequence analysis was performed using genomic DNA extracted from the faecal samples of 52 patients with Crohn's disease (CD) and 58 with ulcerative colitis (UC), which are the two main types of IBD, as well as 42 healthy controls (HC). A reduced microbial diversity was documented in the IBD patients compared with the HC. Moreover, we identified specific confounders and covariates that influenced the association between some bacterial taxa and disease extent (in UC patients) or behaviour (in CD patients) compared with the HC. In particular, a PERMANOVA stepwise regression identified the variables "age", "eat yogurt at least four days per week" and "eat dairy products at least 4 days per week" as covariates when comparing the HC and patients affected by ulcerative proctitis (E1), left-sided UC (distal UC) (E2) and extensive UC (pancolitis) (E3). Instead, the variables "age", "gender", "eat meat at least four days per week" and "eat bread at least 4 days per week" were considered as covariates when comparing the HC with the CD patients affected by non-stricturing, non-penetrating (B1), stricturing (B2) and penetrating (B3) diseases. Considering such variables, our analysis indicated that the UC extent differentially modulated the abundance of the Bifidobacteriaceae, Rikenellaceae, Christensenellaceae, Marinifilaceae, Desulfovibrionaceae, Lactobacillaceae, Streptococcaceae and Peptostreptococcaceae families, while the CD behaviour influenced the abundance of Christensenellaceae, Marinifilaceae, Rikenellaceae, Ruminococcaceae, Barnesiellaceae and Coriobacteriaceae families. In conclusion, our study indicated that some covariates and confounders related to an IBD-associated lifestyle and dietary habits influenced the intestinal taxa diversity and relative abundance in the CD and UC patients compared with the HC. Indeed, such variables should be identified and excluded from the analysis to characterize the bacterial families whose abundance is directly modulated by IBD status, as well as disease extent or behaviour

    Machine Learning Data Analysis Highlights the Role of Parasutterella and Alloprevotella in Autism Spectrum Disorders

    No full text
    In recent years, the involvement of the gut microbiota in disease and health has been investigated by sequencing the 16S gene from fecal samples. Dysbiotic gut microbiota was also observed in Autism Spectrum Disorder (ASD), a neurodevelopmental disorder characterized by gastrointestinal symptoms. However, despite the relevant number of studies, it is still difficult to identify a typical dysbiotic profile in ASD patients. The discrepancies among these studies are due to technical factors (i.e., experimental procedures) and external parameters (i.e., dietary habits). In this paper, we collected 959 samples from eight available projects (540 ASD and 419 Healthy Controls, HC) and reduced the observed bias among studies. Then, we applied a Machine Learning (ML) approach to create a predictor able to discriminate between ASD and HC. We tested and optimized three algorithms: Random Forest, Support Vector Machine and Gradient Boosting Machine. All three algorithms confirmed the importance of five different genera, including Parasutterella and Alloprevotella. Furthermore, our results show that ML algorithms could identify common taxonomic features by comparing datasets obtained from countries characterized by latent confounding variables

    GATA6 Deficiency Leads to Epithelial Barrier Dysfunction and Enhances Susceptibility to Gut Inflammation

    No full text
    Background and Aims Intestinal barrier dysfunction is a hallmark of inflammatory bowel diseases [IBD], but the mechanisms that lead to such a defect are not fully understood. This study was aimed at characterising the factors involved in the defective barrier function in IBD. Methods Transcriptome analysis was performed on colon samples taken from healthy controls [CTR] and IBD patients. Expression of GATA-binding factor 6 [GATA6], a transcription factor involved in intestinal epithelial cell differentiation, was evaluated in colon samples taken from CTR and IBD patients by real-time polymerase chain reaction [PCR] and immunohistochemistry. Intestinal sections of wild-type and Gata6del mice, which exhibit a conditional Gata6 deletion in intestinal epithelial cells and which are either left untreated or receive subcutaneous indomethacin or rectal trinitrobenzene sulphonic acid, were stained with haematoxylin and eosin. In parallel, some Gata6del mice received antibiotics to deplete intestinal flora. Mucosal inflammatory cell infiltration and cytokine production were evaluated by flow cytometry and real-time PCR, respectively, and tight junction proteins were examined by immunofluorescence. Intestinal barrier integrity was assessed by fluorescein isothiocyanate [FITC]-dextran assay. Results Multiple genes involved in cell commitment/proliferation and wound healing were differentially expressed in IBD compared with CTR. Among these, GATA6 was significantly decreased in the IBD epithelium compared with CTR. In mice, conditional deletion of GATA6 in the intestinal epithelium induced primarily epithelial damage, diminished zonula occludens-1 expression, and enhanced intestinal permeability, ultimately resulting in bacteria-driven local immune response and enhanced susceptibility to gut inflammation. Conclusions Reduced expression of GATA6 promotes intestinal barrier dysfunction, thus amplifying intestinal inflammatory pathology
    corecore