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Abstract: Intestinal dysbiosis has been widely documented in inflammatory bowel diseases (IBDs)
and is thought to influence the onset and perpetuation of gut inflammation. However, it remains
unclear whether such bacterial changes rely in part on the modification of an IBD-associated lifestyle
(e.g., smoking and physical activity) and diet (e.g., rich in dairy products, cereals, meat and vegeta-
bles). In this study, we investigated the impact of these habits, which we defined as confounders and
covariates, on the modulation of intestinal taxa abundance and diversity in IBD patients. 16S rRNA
gene sequence analysis was performed using genomic DNA extracted from the faecal samples of
52 patients with Crohn’s disease (CD) and 58 with ulcerative colitis (UC), which are the two main
types of IBD, as well as 42 healthy controls (HC). A reduced microbial diversity was documented in
the IBD patients compared with the HC. Moreover, we identified specific confounders and covariates
that influenced the association between some bacterial taxa and disease extent (in UC patients) or
behaviour (in CD patients) compared with the HC. In particular, a PERMANOVA stepwise regression
identified the variables “age”, “eat yogurt at least four days per week” and “eat dairy products at
least 4 days per week” as covariates when comparing the HC and patients affected by ulcerative
proctitis (E1), left-sided UC (distal UC) (E2) and extensive UC (pancolitis) (E3). Instead, the variables
“age”, “gender”, “eat meat at least four days per week” and “eat bread at least 4 days per week” were
considered as covariates when comparing the HC with the CD patients affected by non-stricturing,
non-penetrating (B1), stricturing (B2) and penetrating (B3) diseases. Considering such variables, our
analysis indicated that the UC extent differentially modulated the abundance of the Bifidobacteriaceae,
Rikenellaceae, Christensenellaceae, Marinifilaceae, Desulfovibrionaceae, Lactobacillaceae, Streptococcaceae and
Peptostreptococcaceae families, while the CD behaviour influenced the abundance of Christensenellaceae,
Marinifilaceae, Rikenellaceae, Ruminococcaceae, Barnesiellaceae and Coriobacteriaceae families. In conclu-
sion, our study indicated that some covariates and confounders related to an IBD-associated lifestyle
and dietary habits influenced the intestinal taxa diversity and relative abundance in the CD and UC
patients compared with the HC. Indeed, such variables should be identified and excluded from the
analysis to characterize the bacterial families whose abundance is directly modulated by IBD status,
as well as disease extent or behaviour.
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1. Introduction

Inflammatory bowel diseases (IBDs), which include Crohn’s disease (CD) and ulcer-
ative colitis (UC), are chronic immune-mediated disorders of the gastrointestinal tract of
unknown aetiology. A large body of evidence suggests that, in IBD, the pathological process
results from the interaction between genetic and environmental factors, which promotes an
abnormal immune response against a component of normal intestinal flora [1–3]. Intestinal
dysbiosis, which is characterized by the loss of beneficial bacteria, overgrowth of potentially
pathogenic bacteria and loss of bacterial diversity, has been widely documented in IBD and
is thought to influence the onset and perpetuation of gut inflammation [4–8]. Several factors
may contribute to intestinal dysbiosis, such as host genetics, concomitant medications and
lifestyle. Dietary habits are known to deeply shape gut microbiota composition [9–12]. The
fact that IBD has a high prevalence in countries with “Westernized” dietary habits supports
a direct relationship between flora composition and diet [13–15]. High-fat, high-sugar
and low-fibre diets reduce the richness of gut microbiota and promote the expansion of
pathogenic species [16–18]. Food additives, which are highly prevalent in the Western diet,
also impair gut homeostasis and promote intestinal inflammation [19–23].

In this context, it is also noteworthy that modification of the patient’s usual diet by
excluding food groups, restricting or adding dietary components, is often used to mitigate
the ongoing inflammation and/or attenuate IBD-related symptoms [24]. These observations
raise the possibility that some of the bacterial changes seen in IBD may rely on specific
lifestyle and dietary habits.

The aim of this study was to analyze the potential role of covariates and confounders
in modulating the taxa diversity and relative abundances in IBD.

2. Materials and Methods
2.1. Patients and Samples

One hundred and ten patients with a confirmed diagnosis of IBD and 42 HC were
prospectively recruited between April 2019 and February 2020 at a single university hospital
(University of Rome Tor Vergata). Participants, aged between 19 and 72 years old, provided
faecal samples collected in Pre-Analytical Sample Processing (PSP) stool collection tubes
(Invitek Molecular). For each patient, the following variables were collected: gender, age,
smoking habit, anthropometric parameters, disease extent and behaviour. Disease charac-
teristics were defined according to the Montreal classification. Patients with a history of
infectious disease in the last three months and who had been using antibiotics, nonsteroidal
anti-inflammatory drugs (NSAIDs) or proton pump inhibitors in the last 4 weeks before
enrolment were excluded. Disease activity was assessed using the Harvey–Bradshaw in-
dex for CD patients (remission: n = 39, mild activity: n = 8, moderate activity: n = 5) and
partial Mayo Clinic scores for UC patients (remission: n = 35, mild activity: n = 19, mod-
erate activity: n = 4). Faecal calprotectin (fCal) levels were analyzed from 28 CD patients
(fCal > 250 mg/kg in 6 patients) and 34 UCpatients (fCal > 250 mg/kg in 14 patients). Infor-
mation about the patients’ lifestyle and dietary habits was collected through a questionnaire
modified by an anamnestic interview applied in a previous study [25], where the effects
of confounders and covariates modulating the differential abundance of microbial species
between Parkinson’s disease patients and healthy controls was analyzed. The anamnestic
interview, modified according to the Italian diet and lifestyle habits, was successfully used
in our previous work to assess the role of possible confounders and covariates in a selected
population of Italian patients affected by Parkinson’s disease [26] and it was applied in the
present study. All patients gave informed consent and the study was approved by the local
ethics committee.

2.2. Sequencing and Bioinformatic Analysis of 16S rRNA Amplicons

Faecal samples were collected using PSP stool collection tubes (Invitek Molecular)
containing 8 mL of Stool DNA Stabilizer. DNA extraction from the stool samples was
performed with PSP Spin Stool DNA Kit Plus (Invitek Molecular) following the manu-
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facturer’s instructions. The purified DNA was quantified using a NanoDrop spectropho-
tometer ND1000 (Termofisher). 16S rRNA amplicon (V3–V4 regions) sequencing analysis
was performed using an Illumina MiSeq 2×300bp. The quality of the raw sequences
was checked using FastQC software and the primers, together with the adapters, were
removed using Cutadapt, while the QIIME 2 pipeline was used to analyse the preprocessed
reads [27]. In detail, reads were chimaera-checked and clustered in amplicon sequence
variants (ASVs) using the DADA2 algorithm [28]. The q2-feature-classifier and the Silva
database vr. 138 were used for taxonomic assignment of representative sequences obtained
by DADA2 [29,30]. Statistical analyses of the ASV tables were performed in R using phy-
loseq, DESeq2, vegan and ggplot packages; ASVs with low frequencies were removed from
the analyses [29] and data that were normalized by DESeq2 [31–33] were used to measure
the α- and β-diversity metrics. The tax_glom function in the phyloseq package was used to
sum up the data to different taxonomic levels and compare between samples.

2.3. Statistical Analysis

We performed the statistical analyses in the R 3.6.1 environment, using the vegan
2.5.6 and phyloseq 1.30.0 packages. Sample data were normalized by the DESeq2 R
package, which is widely used to normalize data from 16S sequencing [33] and adopts a
normalization method in order to estimate the dispersion across genes when the sample
size is small [31]. We filtered OTUs by their prevalence, considering only those present
in at least 10% of the samples. Alpha-diversity was computed at the species level using
three metrics: Chao1, Shannon and Simpson. Beta-diversity was computed using four
metrics: Bray–Curtis and weighted, unweighted and generalized Unifrac metrics. In our
analysis, we considered both covariate and confounder variables as possible biasing factors
and we assessed for their marginal effects using a generalized linear model (GLM), as
previously applied [26]. Covariates are those variables that explain part of the variability in
the outcome, while confounders may distort or mask the effects of the target variable (IBD
status) on the outcome. We looked for covariates and confounders between 16 lifestyle
and diet variables collected from participants. To find unbalanced variables, we used the
Kruskal–Wallis test (non-parametric method) for numerical variables, while the Fisher’s
exact test for the categorical variables and variables with a p < 0.05 were considered as
potential confounders. The covariates were identified using the PERMANOVA test with
9999 permutations, assessing each variable’s marginal effect. For each of the four metrics
used in measuring the β-diversity, we identified microbiota-shaping variables using a
stepwise regression through manual backward elimination. We considered all the variables
that were statistically significant (p < 0.05) for at least one metric, besides the target variable,
as covariates. The PERMANOVA test was also used to confirm the effect of IBD status on
the microbiome composition. The GLM multivariate analysis, adjusting for confounders
and covariates, allows the comparison between unbalanced groups and to consider the
part of variability explained by the covariates. We evaluated the differential abundance of
each taxon by fitting four distributions: negative binomial, zero-inflated negative binomial,
Poisson and hurdle distribution (using R packages: stats 3.4.4, MASS 7.3–50 and pscl 1.5.2.),
and we chose the model with the lowest Bayesian information criteria score.

In a first approach, which we named the IBDCC model, for each distribution, we
compared a “full” model with a “nested” model. The “full” GLM described the taxon
behaviour, taking into account the target variable and all the covariates and confounders
previously identified:

Taxon ~ IBD status + sex + age + yogurt + dairy products + cereals + fruits and
vegetables + legumes + bread.

The “nested” model instead described the taxon behaviour by only considering the
covariates and confounders:

Taxon ~ sex + age + yogurt + dairy products + cereals + fruits and vegetables + legumes
+ bread.
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In a second approach, called the IBD model, where the role of the covariates and
confounders were not taken into account, for each distribution, we compared a “full”
model, which only included the IBD status, with a “null” model, which included a constant
(i.e., 1). We compared the “full” model with the “nested” or the “null” model using the
ANOVA function in R and corrected the p-values for multiple testing using the Benjamini–
Hochberg procedure. We considered only those with a p < 0.05 as differentially abundant
taxa.

3. Results
3.1. Microbiota Diversity Analysis, Study Cohort Characteristics and Identification of Covariates
and Confounders

We collected 152 faecal samples from 52 CD patients, 58 UC patients and 42 HC.
Genomic DNA was extracted from all samples and the 16S rRNA V3-V4 regions were am-
plified. The α-diversity was statistically significant for all the three indices (p = 4.401 × 10−9

for Chao1, p = 3.650× 10−9 for Shannon, p = 1.617× 10−7 for Simpson), indicating a reduced
microbial diversity for the CD and UC patients compared with the HC, as previously re-
ported [34,35]. Results from the microbiome structure and composition in IBD patients and
HC were assessed by using a PERMANOVA test with four β-diversity metrics (Bray–Curtis
and weighted, unweighted Unifrac and Canberra metrics).

Since environmental factors could act as confounders, affecting the differential abun-
dance analysis of bacterial species and causing spurious associations, we provided each
participant with a specific questionnaire to gather information about their lifestyle and
dietary habits. We observed that some variables were skewed among the three groups. In
particular, four variables, namely “eat dairy products at least 4 days per week”, “eat fruit
and vegetables at least 4 days per week”, “eat cereals at least 4 days per week” and “eat
legumes at least 4 days per week”, were found to be unbalanced in the UC and CD patients
compared with the HC and were therefore considered as possible confounders (Table A1).
A PERMANOVA test considering only IBD status as a grouping variable indicated that
this condition was a statistically significant predictor of gut microbiota composition for
all the metrics (p-value < 0.0001 for Bray–Curtis, Canberra and weighted and unweighted
Unifrac). Results from another PERMANOVA test showed that the microbiota differences
between the CD and HC were still significant when considering all the variables reported in
Table A1. Moreover, these data also indicated that five variables, namely “age”, “gender”,
“eat bread at least 4 days per week”, “eat yogurt at least 4 days per week” and “eat dairy
products at least 4 days per week”, were statistically significant for at least one metrics.
Therefore, these variables were considered as covariates since they explained part of the
variability in the microbiota structure (Table 1). Given that both confounders and covariates
may introduce biases in the differential abundance analysis, we assessed their relative
importance in the analysis of the faecal microbiota composition in the UC and CD patients
and the HC.

Table 1. Regression PERMANOVA using four metrics to evaluate the β-diversity and identify
microbiota shaping variables using a stepwise regression through manual backward elimina-
tion. The symbols indicate the p-value threshold (‘’*”: p-value ≤ 0.05, “**”: p-value ≤ 0.01 and
“***”: p-value ≤ 0.001).

Bray–Curtis Unweighted
Unifrac

Weighted
Unifrac Canberra

IBD 0.0001 *** 0.0001 *** 0.0001 *** 0.0001 ***
Age 0.0473 * 0.0265 *

Gender 0.0399 * 0.0052 **
Bread 0.0304 *
Yogurt 0.0367 *

Dairy products 0.0178 *
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3.2. Differential Abundance Analysis between IBD and HC Taxa

A generalized linear model (GLM) was used to evaluate the influence of IBD status on
taxa abundance, comparing a GLM where the IBD status was the only possible variable
(IBD model) with a GLM that was a linear combination of IBD status, covariates and
confounders (IBDCC model). The analysis indicated that the bacterial families that were
differentially abundant in the CD and UC patients compared with the HC were differ-
ent when considering the IBD and IBDCC models (Figures 1 and 2). The two methods
converged in identifying a different abundance of 10 bacterial families (Figure 2), but the
difference in the abundance of the Atopobiaceae family was found to be significant only
when testing the IBD model, while the IBDCC model indicated that Defluvitaleacae was the
only family to be differentially abundant in IBD samples compared with the HC (Figure 2).

Concerning the commonly identified families, Coriobacteriaceae and Streptococcaceae
showed a higher abundance in both the CD and UC patients compared with the HC, while
reduced frequencies of Christensenellaceae, Desulfovibrionellaceae, Marinifilaceae, Rikenellaceae,
Ruminococcaceae, Tannerelleaceae and Barneselliaceae were observed in the CD and UC patients
compared with HC (Figure 1). Moreover, the frequency of Atopobiaceae, Bifidobacteriaceae
and Defluvitillaceae were increased in the UC patients and decreased in the CD patients
compared with the HC (Figure 1).

The Atopobiaceae and Defluvitaleacae families, named as “non-overlapping families”
(NOFs), were investigated to identify the influence of one or more variables on their relative
abundance.

3.3. Analysis of the Covariates and Confounders Influencing Taxa Abundance

We tested the influence of each covariate and confounder related to lifestyle and
dietary habits on the abundance of the two NOFs using two different approaches. In the
first one, we compared the IBD model with a linear model considering the IBD status plus
an additional single variable. In the second approach, we compared the IBDCC model
with a linear model that included the IBD status plus all variables except one, which
was excluded in an iterative procedure. The first approach showed that the differential
abundance of the Atopobiaceae family among the UC, CD and HC groups was not significant
when the condition “eat cereals at least 4 days per week” was included in the model.
In line with these results, the difference between the UC, CD and HC groups observed
for the Atopobiaceae family was not any more significant when excluding “eat cereals
at least 4 days per week” from the covariates by using the second approach (Table 2).
These results indicated that “eat cereals at least 4 days per week” strongly impacted the
Atopobiaceae abundance. In line with our data, it was recently reported that cereals can
perturb Atopobiaceae family abundances [36].

The same approach, which was applied to analyse the abundance of the Defluvitaleacae
family, indicated that this family was not differentially modulated by a single variable, but
by a combination of several variables.

3.4. Association between Gut Microbiota and Montreal Classification

We next assessed whether the frequency of specific bacterial families correlated with
the extent and behaviour of the disease using the IBDCC model. The UC extent was
classified using the Montreal classification as ulcerative proctitis (E1), left-sided UC (distal
UC) (E2) and extensive UC (pancolitis) (E3). In contrast, the CD behaviour was classified
using the Montreal and Vienna classification as non-stricturing, non-penetrating (B1),
stricturing (B2) and penetrating (B3) [37]. The analysis, which was carried out on 42 HC,
9 E1, 18 E2 and 28 E3 samples for the UC patients and on 42 HC, 27 B1, 22 B2 and 3 B3
samples for the CD patients, indicated that alpha-diversity was statistically significant for
both classifications for all the three indices: p = 9.881 × 10−5 (Chao1), p = 3.499 × 10−5

(Shannon) and p = 5.763 × 10−4 (Simpson) for the E1, E2 and E3 groups, respectively,
compared with the HC; and p = 7.166 × 10−8 (Chao1), p = 7.445 × 10−8 (Shannon) and
p = 1.220 × 10−6 (Simpson) for the B1, B2 and B3 groups, respectively, compared with the
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HC. A PERMANOVA test confirmed that the gut microbiota composition was a good
predictor for the UC extent and CD behaviour.
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Figure 1. Differentially abundant bacterial families in samples from the CD (cyan) and UC patients
(green) compared with the HC (pink), as detected using a GLM model only considering the IBD status
(A) or using a GLM considering the IBD status and covariates and confounders (B). The relative
abundance is plotted in log10 on the y-axis.
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Table 2. Analysis of the variables’ (covariates and confounders) impact on bacterial families that were
differently identified using the IBD and IBDCC models. The significance of the Atopobiaceae family
was related to the presence of the “cereals” variable. The symbol “*” indicates a p-value ≤ 0.05.

Model Atopobiaceae

IBD + cereals N.S.
IBD + covariates + confounders (not including cereals) 0.0236 *

IBD + covariates + confounders (including cereals) N.S.
IBD 0.0147 *

Table A2 shows that three variables, namely, “lost 5 kg in the last year”, “eat dairy
products at least 4 days per week” and “drink alcohol at least 4 days per week”, were
significantly unbalanced across the E1, E2, E3 and HC groups, while Table A3 indicates that
four variables, namely, “lost 5 kg in the last year”, “gained 5 kg in the last year”, “eat bread
at least 4 days per week” and “eat legumes at least 4 days per week”, were significantly
unbalanced across the B1, B2, B3 and HC groups. A PERMANOVA stepwise regression
identified the variables “age”, “eat yogurt at least 4 days per week” and “eat dairy products
at least 4 days per week” as covariates for the E1, E2 and E3 groups, while the variables
“age”, “gender”, “eat meat at least 4 days per week” and “eat bread at least 4 days per
week” were considered as covariates for the B1, B2 and B3 groups.

The influence of the UC extent and CD behaviour on the taxa abundances, considering
their covariates and confounders, indicated that the UC extent differentially modulated
the abundances of eight bacterial families (Figure 3), while the CD behaviour influenced
the abundance of six bacterial families (Figure 4) compared with the HC. Among them,
the Christensenellaceae family was consistently decreased in the B1 class when compared
with HC and absent in the B2 and B3 classes. Similarly, the Marinifilaceae, Rikenellaceae and
Ruminococcaceae families were decreased in the B1, B2 and B3 classes compared with the HC.
In contrast, the relative abundance of Barnesiellaceae was found to be decreased in the B1
and B2 classes compared with the HC, while it was increased in the B3 class. Interestingly,
the abundance of the Coriobacteriaceae family was found to be higher in the B1 class, similar
in the B2 class and absent in the B3 class compared with the HC (Figure 3).
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Figure 3. Bacterial families that were differentially present in the samples from the B1 (green), B2
(cyan) and B3 (purple) patients compared with the HC (pink). The relative abundance is plotted in
log10 on the y-axis.

Among those families that were differentially abundant among the UC extent classes,
the Bifidobacteriaceae family showed a clear increasing trend in the HC, E1, E2 and E3 groups,
while Desulfovibrionaceae and Rikenellaceae showed decreasing trends compared with the
HC. The abundance of the Christensenellaceae and Marinifilaceae families were decreased
in the E1, E2 and E3 classes compared with the HC, while the Lactobacillaceae abundance
was greatly increased in the E3 class compared with HC. Moreover, the frequency of
Streptococcaceae family was increased in the E2 and E3 classes compared with the HC, while
Peptostreptococcaceae was found to be decreased in the E1 class and increased in the E2 and
E3 classes compared with the HC (Figure 4).



Nutrients 2022, 14, 260 9 of 15Nutrients 2022, 13, x FOR PEER REVIEW 10 of 17 
 

 
Nutrients 2022, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/nutrients 

 
Figure 4. Bacterial families that were differentially abundant in samples from the E1 (green), E2 
(cyan) and E3 (purple) patients compared with the HC (pink). The relative abundance is plotted in 
log10 on the y-axis. 

4. Discussion 
In this study, we evaluated the differences in microbiota structure and composition 

in faecal samples isolated from IBD patients (52 CD, 58 UC) and healthy controls (42 
HC) using 16S rRNA sequencing, considering the contribution of covariates and con-
founders that may bias the associations between microbiota composition and the patho-
logical status. We focused our attention on the effect of common confounding factors 
(age, gender, diet) since they are known to deeply impact gut microbiota composition 
[38–43]. We confirmed that the variables “age”, “gender” and “dietary habits” influ-
enced the variance of the gut microbiota and the taxa abundance across cases (Table A1). 
In particular, our data indicated that bread consumption could modulate the abundance 
of some microbial species, in line with previous studies showing that the consumption 
of industrial bread induced the proliferation of Bacteroides, leading to systemic inflam-
mation [44]. In order to identify potential variables that are able to influence the micro-
biota composition independently of the disease, we compared two generalized linear 
models: the IBD model, which did not consider the contribution of confounders and co-
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(cyan) and E3 (purple) patients compared with the HC (pink). The relative abundance is plotted in
log10 on the y-axis.

4. Discussion

In this study, we evaluated the differences in microbiota structure and composition
in faecal samples isolated from IBD patients (52 CD, 58 UC) and healthy controls (42 HC)
using 16S rRNA sequencing, considering the contribution of covariates and confounders
that may bias the associations between microbiota composition and the pathological status.
We focused our attention on the effect of common confounding factors (age, gender, diet)
since they are known to deeply impact gut microbiota composition [38–43]. We confirmed
that the variables “age”, “gender” and “dietary habits” influenced the variance of the
gut microbiota and the taxa abundance across cases (Table A1). In particular, our data
indicated that bread consumption could modulate the abundance of some microbial species,
in line with previous studies showing that the consumption of industrial bread induced
the proliferation of Bacteroides, leading to systemic inflammation [44]. In order to identify
potential variables that are able to influence the microbiota composition independently of
the disease, we compared two generalized linear models: the IBD model, which did not
consider the contribution of confounders and covariates, and the IBDCC model, which
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included confounders and covariates. Interestingly, our results showed the differential
abundance of the Atopobiaceae family, identified by the IBD model, was no more significant
when using the IBDCC model, indicating that its abundance was strictly dependent on the
variable “eat cereals at least 4 days per week”. In line with this observation, a significant
increase in the Atopobium genus was previously reported to correlate with the consumption
of wholegrain products [36]. In contrast, the differential abundance of the Defluvitaleacae
family was not modulated by a single variable, suggesting that a combination of more
than a single external factor was necessary to influence its frequency in the IBD patients
compared with the HC.

However, both the IBD and IBDCC models converged to identify a differential abun-
dance of 10 bacterial families, thus confirming a crucial role of the disease in modulating
the microbiota composition. In particular, the models identified a lower abundance of the
Christensenellaceae, Ruminococcaceae, Rikenellaceae and Tannerellaceae families in IBD patients,
which are butyrate-producing bacteria that are able to protect the host from gut inflam-
mation and IBD exacerbation, as previously described [45–49]. We also observed a higher
abundance of the Coriobacteriaceae family in both the CD and UC samples compared with
the HC, thus confirming previous studies [49]. A possible explanation could be that some
members of this family (e.g., A. parvolum) can produce hydrogen sulfide, thus promoting
rapid and severe pancolitis [50]. We reported a reduction in the Desulfovibrionaceae family
in our UC and CD samples compared with the HC, in contrast with some previous stud-
ies [51]. This discrepancy may have been due to the administration of 5-aminosalicylic
acid-based drugs in some patients, which may have affected the activity of sulfate-reducing
bacteria [52]. We also observed a higher frequency of the Bifidobacteriaceae family in the
UC samples compared with the CD and HC samples, in contrast with previous observa-
tions [49,53]. The abundance of Bifidobacterium is known to be strictly dependent on the
disease phase [54], thus providing a possible explanation for the discrepancy between our
results and previous observations. Moreover, we found that the Streptococcaceae family
was increased in both the UC and CD samples compared with the HC, in line with other
studies [49,55].

The association between frequencies of microbial species and the Montreal classifica-
tion of IBD was investigated by comparing 42 HC samples with 58 UC samples organized
into E1 (n = 9), E2 (n = 18) and E3 (n = 28) classes and comparing 42 HC samples with 52 CD
samples organized into B1 (n = 27), B2 (n = 22) and B3 (n = 3) classes. The alpha-diversity
was decreased in the UC and CD samples compared with the HC group depending on the
disease extent and behaviour, respectively. Using a GLM model corrected for covariates
and confounders, we found six differentially abundant families in the CD classes and eight
families in the UC classes when compared with the HC (Figures 3 and 4).

5. Conclusions and Limitations of the Study

Multivariate models are the most reliable statistical methods used to identify and
adjust for several factors related to a patient’s lifestyle and habits, allowing for handling
several covariates and confounders simultaneously. Indeed, the most promising strategy
used to properly correlate a pathological status to microbiota composition should match
the case and controls participants with confounding variables, reducing the underlying
noise derived from factors independently from the pathological status [56]. In this work,
we showed that a multivariate GLM model allowed for identifying the microbial com-
munity variation according to the disease status. However, we must be aware that the
characterization of human microbiota composition, achieved by comparing two different
experimental conditions, is still challenging. The analysis of the microbiota composition
of healthy patients and patients affected by a disease leads to more reliable results when
including the effect of different habits and diets, even if there is still a part of the vari-
ance that remains unexplained. We underline the importance of choosing appropriate
confounders and covariates to better suit the characteristics of the population in the study,
i.e., Mediterranean diet variables in the case of the Italian population. However, the use of
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a highly specific habits questionnaire introduced difficulties in transferring the research
results to different populations.

Another important comment concerns the results obtained in this study comparing
the different Montreal classification classes. We want to point out that the results showing
alteration in specific families between the different Montreal scales were obtained by
comparing groups made up of a small number of patients. The data were analyzed using
the DESeq2 package, which adopts a normalization method to estimate the dispersion
across genes when the sample size is small. However, the study still suffered from a
limited number of samples and the final results must be confirmed by considering a larger
sample size.
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Appendix A

Table A1. Demographic and habit-related parameters of the cohort. The p-values refer to the Kruskall–
Wallis test and Fisher’s test between IBD and the numerical or categorical variables, respectively.
n = no, Y = yes. The variables in bold were significantly unbalanced between the HC (42 samples),
CD (52 samples) and UC (58 samples) groups.

p-Value HC CD UC

Age 0.26

Mean: 38.02 Mean: 42.42 Mean: 43.43
Median: 32.5 Median: 42 Median: 42

Std.Dev: 15.95 Std.Dev: 15.95 Std.Dev: 14.04
Min: 22 Min: 19 Min: 19
Max: 72 Max: 67 Max: 69

Gender 0.21 F = 0.64, F = 0.47, F = 0.5,
M = 0.36 M = 0.53 M = 0.5

Currently smokes 0.46 n = 0.81, n = 0.91, n = 0.88,
Y = 0.17 Y = 0.09 Y = 0.12

Height 0.66

Mean: 167.33 Mean: 168.3 Mean: 170.02
Median: 168 Median: 173 Median: 170
Std.Dev: 7.78 Std.Dev: 7.78 Std.Dev: 10.04

Min: 150 Min: 0 Min: 150
Max: 185 Max: 186 Max: 188

Caesarean 0.46 n = 0.81, Y = 0.17 n = 0.91, Y = 0.09 n = 0.88, Y = 0.12
Eat yogurt at least 4 days/week 0.07 n = 0.74, Y = 0.26 n = 0.91, Y = 0.09 n = 0.78, Y = 0.22
Eat bread at least 4 days/week 0.15 n = 0.33, Y = 0.67 n = 0.19, Y = 0.81 n = 0.17, Y = 0.83
Eat pasta at least 4 days/week 0.06 n = 0.29, Y = 0.71 n = 0.15, Y = 0.85 n = 0.34, Y = 0.66

Eat dairy products at least 4 days/week 0.04 n = 0.36, Y = 0.64 n = 0.4, Y = 0.6 n = 0.59, Y = 0.41
Eat fruit and vegetables at least 4 days/week 0.01 n = 0.14, Y = 0.86 n = 0.34, Y = 0.66 n = 0.14, Y = 0.86

Eat meat at least 4 days/week 0.33 n = 0.24, Y = 0.76 n = 0.3, Y = 0.7 n = 0.38, Y = 0.62
Eat fish at least 4 days/week 0.45 n = 0.74, Y = 0.26 n = 0.83, Y = 0.17 n = 0.74, Y = 0.26

Eat cereals at least 4 days/week 0.02 n = 0.71, Y = 0.29 n = 0.89, Y = 0.11 n = 0.67, Y = 0.33
Eat legumes at least 4 days/week 0.002 n = 0.62, Y = 0.38, n = 0.90, Y = 0.10, n = 0.84, Y = 0.16,
Drink coffee at least 4 days/week 0.20 n = 0.14, Y = 0.86 n = 0.28, Y = 0.72 n = 0.28, Y = 0.72

Physical activity 0.10 n = 0.4, Y = 0.6 n = 0.56, Y = 0.44 n = 0.36, Y = 0.64
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Appendix B

Table A2. Demographic and habits-related parameters of the cohort. The p-values refer to the
Kruskall–Wallis test and Fisher’s test between the Montreal E scale and the numeric or categorical
variables, respectively. n = no, Y = yes. The variable in bold was significantly unbalanced between
HC (42 samples), E1 (9 samples), E2 (18 samples) and E3 (28 samples) groups.

p-Value HC E1 E2 E3

Height 0.39

Mean: 167.73 Mean: 173.33 Mean: 169.28 Mean: 169.36
Median: 168 Median: 175 Median: 168.5 Median: 171
Std.Dev: 7.92 Std.Dev: 10.69 Std.Dev: 10.25 Std.Dev: 9.96

Min: 150 Min: 158 Min: 155 Min: 150
Max: 185 Max: 188 Max: 185 Max: 188

Drink coffee at least
4 days/week 0.45 n = 0.16, Y = 0.84 n = 0.22, Y = 0.78 n = 0.22, Y = 0.78 n = 0.32, Y = 0.68

Eat meat at least
4 days/week 0.33 n = 0.23, Y = 0.77 n = 0.33, Y = 0.67 n = 0.44, Y = 0.56 n = 0.36, Y = 0.64

Eat cereals at least
4 days/week 0.47 n = 0.73, Y = 0.27 n = 0.56, Y = 0.44 n = 0.78, Y = 0.22 n = 0.61, Y = 0.39

Physical activity 0.72 n = 0.39, Y = 0.61 n = 0.56, Y = 0.44 n = 0.33, Y = 0.67 n = 0.36, Y = 0.64

Age 0.13

Mean: 38.98 Mean: 39.22 Mean: 44.28 Mean: 43.18
Median: 34.5 Median: 40 Median: 46.5 Median: 41

Std.Dev: 16.33 Std.Dev: 10.31 Std.Dev: 13.37 Std.Dev: 15.51
Min: 22 Min: 25 Min: 20 Min: 19
Max: 72 Max: 58 Max: 69 Max: 68

Eat fruit and
vegetables at least

4 days/week
0.67 n = 0.14, Y = 0.86 Y = 1 n = 0.17, Y = 0.83 n = 0.18, Y = 0.82

Currently smokes 0.49 n = 0.68, Y = 0.32 n = 0.89, Y = 0.11 n = 0.72, Y = 0.28 n = 0.82, Y = 0.18

Gender 0.54
F = 0.64, F = 0.44, F = 0.5, F = 0.5,
M = 0.36 M = 0.56 M = 0.5 M = 0.5

Eat dairy products at
least 4 days/week 0.01 n = 0.36, Y = 0.64 n = 0.56, Y = 0.44 n = 0.83, Y = 0.17 n = 0.46, Y = 0.54

Eat legumes at least
4 days/week 0.07 n = 0.64, Y = 0.36 n = 0.78, Y = 0.22 n = 0.94, Y = 0.06 n = 0.79, Y = 0.21

Eat bread at least
4 days/week 0.23 n = 0.34, Y = 0.66 n = 0.11, Y = 0.89 n = 0.22, Y = 0.78 n = 0.14, Y = 0.86

Caesarean section 0.96 n = 0.82, Y = 0.16 n = 0.89, Y = 0.11 n = 0.83, Y = 0.17 n = 0.89, Y = 0.11
Eat pasta at least

4 days/week 0.71 n = 0.3, Y = 0.7 n = 0.44, Y = 0.56 n = 0.39, Y = 0.61 n = 0.29, Y = 0.71

Eat fish at least
4 days/week 0.71 n = 0.75, Y = 0.25 n = 0.89, Y = 0.11 n = 0.72, Y = 0.28 n = 0.68, Y = 0.32

Eat yogurt at least
4 days/week 0.95 n = 0.75, Y = 0.25 n = 0.78, Y = 0.22 n = 0.83, Y = 0.17 n = 0.75, Y = 0.25

Appendix C

Table A3. Demographic and habits-related parameters of the cohort. The p-values refer to the
Kruskall–Wallis test and Fisher’s test between the Montreal B scale and the numeric or categorical
variables, respectively. n = No, Y = yes. The variables in bold were unbalanced between the HC
(42 samples), B1 (27 samples), B2 (22 samples) and B3 (3 samples) groups.

p-Value HC B1 B2 B3

Height 0.28

Mean: 167.33 Mean: 170.07 Mean: 166.27 Mean: 167.5
Median: 168 Median: 173 Median: 176 Median: 165
Std.Dev: 7.78 Std.Dev: 9.77 Std.Dev: 38.34 Std.Dev: 13

Min: 150 Min: 153 Min: 0 Min: 155
Max: 185 Max: 185 Max: 186 Max: 185
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Table A3. Cont.

p-Value HC B1 B2 B3

Drink coffee at least
4 days/week 0.02 n = 0.14, Y = 0.86 n = 0.33, Y = 0.67 n = 0.14, Y = 0.86 n = 0.75, Y = 0.25

Eat meat at least
4 days/week 0.33 n = 0.24, Y = 0.76 n = 0.26, Y = 0.74 n = 0.41, Y = 0.59 Y = 1

Eat cereals at least
4 days/week 0.09 n = 0.71, Y = 0.29 n = 0.85, Y = 0.15 n = 0.95, Y = 0.05 n = 0.75, Y = 0.25

Physical activity 0.03 n = 0.4, Y = 0.6 n = 0.67, Y = 0.33 n = 0.55, Y = 0.45 Y = 1

Age 0.03

Mean: 38.02 Mean: 42.41 Mean: 42.82 Mean: 40.25
Median: 32.5 Median: 45 Median: 41.5 Median: 41

Std.Dev: 15.95 Std.Dev: 13.84 Std.Dev: 11.39 Std.Dev: 16.82
Min: 22 Min: 19 Min: 26 Min: 21
Max: 72 Max: 67 Max: 64 Max: 58

Eat fruit and
vegetables at least

4 days/week
0.09 n = 0.14, Y = 0.86 n = 0.3, Y = 0.7 n = 0.41, Y = 0.59 n = 0.25, Y = 0.75

Currently smokes 0.08 n = 0.67, Y = 0.33 n = 0.48, Y = 0.52 n = 0.73, Y = 0.23 n = 1

Gender 0.07
F = 0.64, F = 0.56, F = 0.32, F = 0.75,
M = 0.36 M = 0.44 M = 0.68 M = 0.25

Eat dairy products at
least 4 days/week 0.45 n = 0.36, Y = 0.64 n = 0.41, Y = 0.59 n = 0.32, Y = 0.68 n = 0.75, Y = 0.25

Eat legumes at least
4 days/week 0.00 n = 0.62, Y = 0.38 n = 0.85, Y = 0.15 n = 0.95, Y = 0.05 n = 0.75, Y = 0.25

Eat bread at least
4 days/week 0.02 n = 0.33, Y = 0.67 n = 0.19, Y = 0.81 n = 0.09, Y = 0.91 n = 0.75, Y = 0.25

Caesarean section 0.4 n = 0.81, Y = 0.17 n = 0.96, Y = 0.04 n = 0.82, Y = 0.18 n = 1
Eat pasta at least

4 days/week 0.07 n = 0.29, Y = 0.71 n = 0.07, Y = 0.93 n = 0.18, Y = 0.82 n = 0.5, Y = 0.5

Eat fish at least
4 days/week 0.65 n = 0.74, Y = 0.26 n = 0.85, Y = 0.15 n = 0.82, Y = 0.18 n = 0.75, Y = 0.25

Eat yogurt at least
4 days/week 0.1 n = 0.74, Y = 0.26 n = 0.89, Y = 0.11 n = 0.95, Y = 0.05 n = 0.75, Y = 0.25

References
1. Abraham, C.; Cho, J.H. Inflammatory bowel disease. N. Engl. J. Med. 2009, 361, 2066–2078. [CrossRef]
2. Bouma, G.; Strober, W. The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol. 2003, 3, 521–533.

[CrossRef]
3. Jostins, L.; Ripke, S.; Weersma, R.K.; Duerr, R.H.; McGovern, D.P.; Hui, K.Y.; Lee, J.C.; Schumm, L.P.; Sharma, Y.;

Anderson, C.A.; et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease.
Nature 2012, 491, 119–124. [CrossRef] [PubMed]

4. Takaishi, H.; Matsuki, T.; Nakazawa, A.; Takada, T.; Kado, S.; Asahara, T.; Kamada, N.; Sakuraba, A.; Yajima, T.; Higuchi, H.; et al.
Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int. J. Med
Microbiol. 2008, 298, 463–472. [CrossRef]

5. Halfvarson, J.; Brislawn, C.J.; Lamendella, R.; Vázquez-Baeza, Y.; Walters, W.A.; Bramer, L.M.; D’Amato, M.; Bonfiglio, F.;
McDonald, D.; Gonzalez, A.; et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2017,
2, 1–7. [CrossRef]

6. Frank, D.N.; St Amand, A.L.; Feldman, R.A.; Boedeker, E.C.; Harpaz, N.; Pace, N.R. Molecular-phylogenetic characterization of
microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 2007, 104, 13780–13785.
[CrossRef] [PubMed]

7. Scanlan, P.D.; Shanahan, F.; Mahony, C.O.; Marchesi, J.R. Culture-Independent Analyses of Temporal Variation of the Dominant
Fecal Microbiota and Targeted Bacterial Subgroups in Crohn’ s Disease. J. Clin. Microbiol. 2006, 44, 3980–3988. [CrossRef]

8. Lai, S.; Molfino, A.; Testorio, M.; Perrotta, A.M.; Currado, A.; Pintus, G.; Pietrucci, D.; Unida, V.; La Rocca, D.; Biocca, S.; et al.
Effect of Low-Protein Diet and Inulin on Microbiota and Clinical Parameters in Patients with Chronic Kidney Disease. Nutrients
2019, 11, 3006. [CrossRef] [PubMed]

9. Levine, A.; Boneh, R.S.; Wine, E. Evolving role of diet in the pathogenesis and treatment of inflammatory bowel diseases. Gut
2018, 67, 1726–1738. [CrossRef] [PubMed]

http://doi.org/10.1056/NEJMra0804647
http://doi.org/10.1038/nri1132
http://doi.org/10.1038/nature11582
http://www.ncbi.nlm.nih.gov/pubmed/23128233
http://doi.org/10.1016/j.ijmm.2007.07.016
http://doi.org/10.1038/nmicrobiol.2017.4
http://doi.org/10.1073/pnas.0706625104
http://www.ncbi.nlm.nih.gov/pubmed/17699621
http://doi.org/10.1128/JCM.00312-06
http://doi.org/10.3390/nu11123006
http://www.ncbi.nlm.nih.gov/pubmed/31818021
http://doi.org/10.1136/gutjnl-2017-315866
http://www.ncbi.nlm.nih.gov/pubmed/29777041


Nutrients 2022, 14, 260 14 of 15

10. Lo, C.-H.; Lochhead, P.; Khalili, H.; Song, M.; Tabung, F.K.; Burke, K.E.; Richter, J.M.; Giovannucci, E.L.; Chan, A.T.;
Ananthakrishnan, A.N. Dietary Inflammatory Potential and Risk of Crohn’s Disease and Ulcerative Colitis. Gastroenterology 2020,
159, 873–883.e1. [CrossRef]

11. Hildebrandt, M.A.; Hoffmann, C.; Sherrill–Mix, S.A.; Keilbaugh, S.A.; Hamady, M.; Chen, Y.-Y.; Knight, R.; Ahima, R.S.;
Bushman, F.; Wu, G.D. High-Fat Diet Determines the Composition of the Murine Gut Microbiome Independently of Obesity.
Gastroenterology 2009, 137, 1716–1724.e2. [CrossRef]

12. De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of
diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci.
USA 2010, 107, 14691–14696. [CrossRef]

13. Probert, C.S.; Jayanthi, V.; Hughes, A.O.; Thompson, J.R.; Wicks, A.C.; Mayberry, J.F. 1993. Prevalence and family risk of ulcerative
colitis and Crohn’s disease: An epidemiological study among Europeans and south Asians in Leicestershire. Gut 1993, 34,
1547–1551. [CrossRef]

14. Acosta, M.B.-D.; Castro, A.A.; Souto, R.; Iglesias, M.; Lorenzo, A.; Dominguez-Muñoz, J. Emigration to western industrialized
countries: A risk factor for developing inflammatory bowel disease. J. Crohn’s Coliti 2011, 5, 566–569. [CrossRef]

15. Li, X.; Sundquist, J.; Hemminki, K.; Sundquist, K. Risk of inflammatory bowel disease in first- and second-generation immigrants
in Sweden: A nationwide follow-up study. Inflamm Bowel Dis. 2011, 17, 1784–1791. [CrossRef]

16. Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.; Terrapon, N.;
Muller, A.; et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen
Susceptibility. Cell 2016, 167, 1339–1353.e21. [CrossRef]

17. Khan, S.; Waliullah, S.; Godfrey, V.; Khan, A.W.; Ramachandran, R.A.; Cantarel, B.L.; Behrendt, C.; Peng, L.; Hooper, L.V.; Zaki, H.
Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice. Sci. Transl. Med. 2020, 12. [CrossRef]
[PubMed]

18. Devkota, S.; Wang, Y.; Musch, M.W.; Leone, V.; Fehlner-Peach, H.; Nadimpalli, A.; Antonopoulos, D.A.; Jabri, B.; Chang, E.B.
Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 2012, 487, 104–108.
[CrossRef]

19. Ruiz, P.A.; Morón, B.; Becker, H.M.; Lang, S.; Atrott, K.; Spalinger, M.R.; Scharl, M.; Wojtal, K.A.; Fischbeck-Terhalle, A.;
Frey-Wagner, I.; et al. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: Role of the NLRP3 inflammasome. Gut
2017, 66, 1216–1224. [CrossRef]

20. Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al.
Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014, 514, 181–186. [CrossRef]

21. Chassaing, B.; Koren, O.; Goodrich, J.K.; Poole, A.C.; Srinivasan, S.; Ley, R.E.; Gewirtz, A.T. Dietary emulsifiers impact the mouse
gut microbiota promoting colitis and metabolic syndrome. Nature 2015, 519, 92–96. [CrossRef]

22. Chassaing, B.; Van De Wiele, T.; De Bodt, J.; Marzorati, M.; Gewirtz, A.T. Dietary emulsifiers directly alter human microbiota
composition and gene expression ex vivo potentiating intestinal inflammation. Gut 2017, 66, 1414–1427. [CrossRef]

23. Laudisi, F.; Stolfi, C.; Monteleone, G. Impact of Food Additives on Gut Homeostasis. Nutrients 2019, 11, 2334. [CrossRef]
24. Barros, V.J.D.S.; Severo, J.S.; Mendes, P.H.M.; da Silva, A.C.A.; de Oliveira, K.B.V.; Parente, J.M.L.; Lima, M.M.; Neto, E.M.M.;

dos Santos, A.A.; Tolentino, M. Effect of dietary interventions on inflammatory biomarkers of inflammatory bowel diseases: A
systematic review of clinical trials. Nutrition 2021, 91–92, 111457. [CrossRef]

25. Hill-Burns, E.M.; Debelius, J.W.; Morton, J.T.; Wissemann, W.T.; Lewis, M.R.; Wallen, Z.D.; Peddada, S.D.; Factor, S.A.; Molho, E.;
Zabetian, C.P.; et al. Parkinson’s Disease and Parkinson’s Disease Medications Have Distinct Signatures of the Gut Microbiome.
Mov. Disord. 2017, 32, 739–749. [CrossRef]

26. Pietrucci, D.; Cerroni, R.; Unida, V.; Farcomeni, A.; Pierantozzi, M.; Mercuri, N.B.; Biocca, S.; Stefani, A.; Desideri, A. Dysbiosis of
gut microbiota in a selected population of Parkinson’s patients. Parkinsonism Relat. Disord. 2019, 65, 124–130. [CrossRef]

27. Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.;
Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019,
37, 852–857. [CrossRef]

28. Callahan, B.J.; Mcmurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference
from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [CrossRef]

29. Bokulich, N.A.; Subramanian, S.; Faith, J.J.; Gevers, D.; Gordon, J.I.; Knight, R.; Mills, D.A.; Caporaso, J.G. Quality-filtering vastly
improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 2013, 10, 57–59. [CrossRef]

30. Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glockner, F.O. The SILVA ribosomal RNA gene
database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [CrossRef]

31. Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome
Biol. 2014, 15, 550. [CrossRef]

32. McMurdie, P.J.; Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census
Data. PLoS ONE 2013, 8, e61217. [CrossRef]

33. McMurdie, P.; Holmes, S. Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLOS Comput. Biol. 2014, 10,
e1003531. [CrossRef]

http://doi.org/10.1053/j.gastro.2020.05.011
http://doi.org/10.1053/j.gastro.2009.08.042
http://doi.org/10.1073/pnas.1005963107
http://doi.org/10.1136/gut.34.11.1547
http://doi.org/10.1016/j.crohns.2011.05.009
http://doi.org/10.1002/ibd.21535
http://doi.org/10.1016/j.cell.2016.10.043
http://doi.org/10.1126/scitranslmed.aay6218
http://www.ncbi.nlm.nih.gov/pubmed/33115951
http://doi.org/10.1038/nature11225
http://doi.org/10.1136/gutjnl-2015-310297
http://doi.org/10.1038/nature13793
http://doi.org/10.1038/nature14232
http://doi.org/10.1136/gutjnl-2016-313099
http://doi.org/10.3390/nu11102334
http://doi.org/10.1016/j.nut.2021.111457
http://doi.org/10.1002/mds.26942
http://doi.org/10.1016/j.parkreldis.2019.06.003
http://doi.org/10.1038/s41587-019-0209-9
http://doi.org/10.1038/nmeth.3869
http://doi.org/10.1038/nmeth.2276
http://doi.org/10.1093/nar/gks1219
http://doi.org/10.1186/s13059-014-0550-8
http://doi.org/10.1371/journal.pone.0061217
http://doi.org/10.1371/journal.pcbi.1003531


Nutrients 2022, 14, 260 15 of 15

34. Clooney, A.G.; Eckenberger, J.; Laserna-Mendieta, E.; A Sexton, K.; Bernstein, M.T.; Vagianos, K.; Sargent, M.; Ryan, F.; Moran, C.;
Sheehan, D.; et al. Ranking microbiome variance in inflammatory bowel disease: A large longitudinal intercontinental study. Gut
2020, 70, 499–510. [CrossRef]

35. Manichanh, C.; Rigottier-Gois, L.; Bonnaud, E.; Gloux, K.; Pelletier, E.; Frangeul, L.; Nalin, R.; Jarrin, C.; Chardon, P.;
Marteau, P.; et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 2006, 55,
205–211. [CrossRef]

36. Connolly, M.L.; Tuohy, K.M.; Lovegrove, J.A. Wholegrain oat-based cereals have prebiotic potential and low glycaemic index. Br.
J. Nutr. 2012, 108, 2198–2206. [CrossRef]

37. Satsangi, J.; Silverberg, M.S.; Vermeire, S.; Colombel, J.F. The Montreal classification of inflammatory bowel disease: Controversies,
consensus, and implications. Gut 2006, 55, 749–753. [CrossRef]

38. Yurkovetskiy, L.; Burrows, M.; Khan, A.A.; Graham, L.; Volchkov, P.; Becker, L.; Antonopoulos, D.; Umesaki, Y.; Chervonsky, A.V.
Gender Bias in Autoimmunity Is Influenced by Microbiota. Immunity 2013, 39, 400–412. [CrossRef]

39. Markle, J.G.M.; Frank, D.N.; Mortin-Toth, S.; Robertson, C.E.; Feazel, L.M.; Rolle-Kampczyk, U.; von Bergen, M.; McCoy, K.D.;
Macpherson, A.J.; Danska, J.S. Sex Differences in the Gut Microbiome Drive Hormone-Dependent Regulation of Autoimmunity.
Science 2013, 339, 1084–1088. [CrossRef]

40. Mueller, S.; Saunier, K.; Hanisch, C.; Norin, E.; Alm, L.; Midtvedt, T.; Cresci, A.; Silvi, S.; Orpianesi, C.; Verdenelli, M.C.; et al.
Differences in Fecal Microbiota in Different European Study Populations in Relation to Age, Gender, and Country: A Cross-
Sectional Study. Appl. Environ. Microbiol. 2006, 72, 1027–1033. [CrossRef]

41. David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.;
Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [CrossRef]

42. Zhu, Y.; Lin, X.; Zhao, F.; Shi, X.; Li, H.; Li, Y.; Zhu, W.; Xu, X.; Li, C.; Zhou, G. Meat, dairy and plant proteins alter bacterial
composition of rat gut bacteria. Sci. Rep. 2015, 5, 15220. [CrossRef]

43. Salles, N. Basic Mechanisms of the Aging Gastrointestinal Tract. Dig. Dis. 2007, 25, 112–117. [CrossRef]
44. Arias, M.; Cobo, M.; Jaime-Sánchez, P.; Pastor, J.; Marijuan, P.; Pardo, J.; Rezusta, A.; Del Campo, R. Gut microbiota and systemic

inflammation changes after bread consumption: The ingredients and the processing influence. J. Funct. Foods 2017, 32, 98–105.
[CrossRef]

45. Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; Gonzalez, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.;
Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for
Inflammatory Bowel Diseases. Front Immunol. 2019, 10, 277. [CrossRef]

46. Waters, J.L.; Ley, R.E. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC
Biol. 2019, 17, 1–11. [CrossRef]

47. Morgan, X.C.; Tickle, T.L.; Sokol, H.; Gevers, D.; Devaney, K.L.; Ward, D.V.; Reyes, J.A.; Shah, S.A.; LeLeiko, N.; Snapper, S.B.; et al.
Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012, 13, R79. [CrossRef]

48. Presti, A.L.; Zorzi, F.; Del Chierico, F.; Altomare, A.; Cocca, S.; Avola, A.; De Biasio, F.; Russo, A.; Cella, E.; Reddel, S.; et al. Fecal
and Mucosal Microbiota Profiling in Irritable Bowel Syndrome and Inflammatory Bowel Disease. Front. Microbiol. 2019, 10, 1655.
[CrossRef]

49. Alam, M.T.; Amos, G.; Murphy, A.R.J.; Murch, S.; Wellington, E.M.H.; Arasaradnam, R.P. Microbial imbalance in inflammatory
bowel disease patients at different taxonomic levels. Gut Pathog. 2020, 12, 1–8. [CrossRef]

50. Mottawea, W.; Chiang, C.-K.; Mühlbauer, M.; Starr, A.E.; Butcher, J.; Abujamel, T.; Deeke, S.A.; Brandel, A.; Zhou, H.;
Shokralla, S.; et al. Altered intestinal microbiota–host mitochondria crosstalk in new onset Crohn’s disease. Nat. Commun.
2016, 7, 13419. [CrossRef]

51. Nagao-Kitamoto, H.; Kamada, N. Host-microbial Cross-talk in Inflammatory Bowel Disease. Immune Netw. 2017, 17, 1–12.
[CrossRef]

52. Pitcher, M.C.L.; Beatty, E.R.; Cummings, J.H. The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal
sulphide in patients with ulcerative colitis. Gut 2000, 46, 64–72. [CrossRef]

53. Papa, E.; Docktor, M.; Smillie, C.; Weber, S.; Preheim, S.P.; Gevers, D.; Giannoukos, G.; Ciulla, D.; Tabbaa, D.; Ingram, J.; et al.
Non-Invasive Mapping of the Gastrointestinal Microbiota Identifies Children with Inflammatory Bowel Disease. PLoS ONE 2012,
7, e39242. [CrossRef]

54. Wang, W.; Chen, L.; Zhou, R.; Wang, X.; Song, L.; Huang, S.; Wang, G.; Xia, B.; Forbes, B.A. Increased Proportions of Bifidobac-
terium and the Lactobacillus Group and Loss of Butyrate-Producing Bacteria in Inflammatory Bowel Disease. J. Clin. Microbiol.
2013, 52, 398–406. [CrossRef]

55. Chen, L.; Wang, W.; Zhou, R.; Ng, S.C.; Li, J.; Huang, M.; Zhou, F.; Wang, X.; Shen, B.; Kamm, M.A.; et al. Characteristics of Fecal
and Mucosa-Associated Microbiota in Chinese Patients With Inflammatory Bowel Disease. Medicine 2014, 93, e51. [CrossRef]

56. Vujkovic-Cvijin, I.; Sklar, J.; Jiang, L.; Natarajan, L.; Knight, R.; Belkaid, Y. Host variables confound gut microbiota studies of
human disease. Nature 2020, 587, 448–454. [CrossRef]

http://doi.org/10.1136/gutjnl-2020-321106
http://doi.org/10.1136/gut.2005.073817
http://doi.org/10.1017/S0007114512000281
http://doi.org/10.1136/gut.2005.082909
http://doi.org/10.1016/j.immuni.2013.08.013
http://doi.org/10.1126/science.1233521
http://doi.org/10.1128/AEM.72.2.1027-1033.2006
http://doi.org/10.1038/nature12820
http://doi.org/10.1038/srep15220
http://doi.org/10.1159/000099474
http://doi.org/10.1016/j.jff.2017.02.023
http://doi.org/10.3389/fimmu.2019.00277
http://doi.org/10.1186/s12915-019-0699-4
http://doi.org/10.1186/gb-2012-13-9-r79
http://doi.org/10.3389/fmicb.2019.01655
http://doi.org/10.1186/s13099-019-0341-6
http://doi.org/10.1038/ncomms13419
http://doi.org/10.4110/in.2017.17.1.1
http://doi.org/10.1136/gut.46.1.64
http://doi.org/10.1371/journal.pone.0039242
http://doi.org/10.1128/JCM.01500-13
http://doi.org/10.1097/MD.0000000000000051
http://doi.org/10.1038/s41586-020-2881-9

	Introduction 
	Materials and Methods 
	Patients and Samples 
	Sequencing and Bioinformatic Analysis of 16S rRNA Amplicons 
	Statistical Analysis 

	Results 
	Microbiota Diversity Analysis, Study Cohort Characteristics and Identification of Covariates and Confounders 
	Differential Abundance Analysis between IBD and HC Taxa 
	Analysis of the Covariates and Confounders Influencing Taxa Abundance 
	Association between Gut Microbiota and Montreal Classification 

	Discussion 
	Conclusions and Limitations of the Study 
	Appendix A
	Appendix B
	Appendix C
	References

