12 research outputs found

    Understanding the impact of angiopoietin-like protein 4 (ANGPTL4) on keratinocytes migration and proliferation using time lapse microscopy and live cell imaging

    No full text
    Skin wound healing involves both epithelia cell proliferation and migration, which are modulated by numerous secretory factors. Fasting-induced Adipose Factor (FIAF) was shown to be upregulated during wound healing, however its effects on migration and proliferation of keratinocytes remains unclear. By using immortalized form of keratinocytes (HaCaT) and FIAF-knockdown keratinocytes (HaCaTKD) with and without proliferation inhibitor (Mitomycin C), we aim to determine the effect of FIAF on keratinocyte migration and proliferation during wound healing. [4th Award

    Emerging roles of angiopoietin-like 4 in human cancer

    No full text
    Angiopoietin-like 4 (ANGPTL4) is best known for its role as an adipokine involved in the regulation of lipid and glucose metabolism. The characterization of ANGPTL4 as an adipokine is largely due to our limited understanding of the interaction partners of ANGPTL4 and how ANGPTL4 initiates intracellular signaling. Recent findings have revealed a critical role for ANGPTL4 in cancer growth and progression, anoikis resistance, altered redox regulation, angiogenesis, and metastasis. Emerging evidence suggests that ANGPTL4 function may be drastically altered depending on the proteolytic processing and posttranslational modifications of ANGPTL4, which may clarify several conflicting roles of ANGPTL4 in different cancers. Although the N-terminal coiled-coil region of ANGPTL4 has been largely responsible for the endocrine regulatory role in lipid metabolism, insulin sensitivity, and glucose homeostasis, it has now emerged that the COOH-terminal fibrinogen-like domain of ANGPTL4 may be a key regulator in the multifaceted signaling during cancer development. New insights into the mechanistic action of this functional domain have opened a new chapter into the possible clinical application of ANGPTL4 as a promising candidate for clinical intervention in the fight against cancer. This review summarizes our current understanding of ANGPTL4 in cancer and highlights areas that warrant further investigation. A better understanding of the underlying cellular and molecular mechanisms of ANGPTL4 will reveal novel insights into other aspects of tumorigenesis and the potential therapeutic value of ANGPTL4.Accepted versio

    Cancer-associated fibroblasts enact field cancerization by promoting extratumoral oxidative stress

    No full text
    Histological inspection of visually normal tissue adjacent to neoplastic lesions often reveals multiple foci of cellular abnormalities. This suggests the presence of a regional carcinogenic signal that spreads oncogenic transformation and field cancerization. We observed an abundance of mutagenic reactive oxygen species in the stroma of cryosectioned patient tumor biopsies, indicative of extratumoral oxidative stress. Diffusible hydrogen peroxide (H2O2) was elevated in the conditioned medium of cultured skin epithelia at various stages of oncogenic transformation, and H2O2 production increased with greater tumor-forming and metastatic capacity of the studied cell lines. Explanted cancer-associated fibroblasts (CAFs) also had higher levels of H2O2 secretion compared with normal fibroblasts (FIBs). These results suggest that extracellular H2O2 acts as a field effect carcinogen. Indeed, H2O2-treated keratinocytes displayed decreased phosphatase and tensin homolog (PTEN) and increased Src activities because of oxidative modification. Furthermore, treating FIBs with CAF-conditioned medium or exogenous H2O2 resulted in the acquisition of an oxidative, CAF-like state. In vivo, the proliferative potential and invasiveness of composite tumor xenografts comprising cancerous or non-tumor-forming epithelia with CAFs and FIBs could be attenuated by the presence of catalase. Importantly, we showed that oxidatively transformed FIBs isolated from composite tumor xenografts retained their ability to promote tumor growth and aggressiveness when adoptively transferred into new xenografts. Higher H2O2 production by CAFs was contingent on impaired TGFβ signaling leading to the suppression of the antioxidant enzyme glutathione peroxidase 1 (GPX1). Finally, we detected a reduction in Smad3, TAK1 and TGFβRII expression in a cohort of 197 clinical squamous cell carcinoma (SCC) CAFs, suggesting that impaired stromal TGFβ signaling may be a clinical feature of SCC. Our study indicated that CAFs and cancer cells engage redox signaling circuitries and mitogenic signaling to reinforce their reciprocal relationship, suggesting that future anticancer approaches should simultaneously target ligand receptor and redox-mediated pathways.MOE (Min. of Education, S’pore)Published versio

    Angiopoietin-like 4 induces a β-catenin-mediated upregulation of ID3 in fibroblasts to reduce scar collagen expression

    No full text
    In adult skin wounds, collagen expression rapidly re-establishes the skin barrier, although the resultant scar is aesthetically and functionally inferior to unwounded tissue. Although TGFβ signaling and fibroblasts are known to be responsible for scar-associated collagen production, there are currently no prophylactic treatments for scar management. Fibroblasts in crosstalk with wound keratinocytes orchestrate collagen expression, although the precise paracrine pathways involved remain poorly understood. Herein, we showed that the matricellular protein, angiopoietin-like 4 (ANGPTL4), accelerated wound closure and reduced collagen expression in diabetic and ANGPTL4-knockout mice. Similar observations were made in wild-type rat wounds. Using human fibroblasts as a preclinical model for mechanistic studies, we systematically elucidated that ANGPTL4 binds to cadherin-11, releasing membrane-bound β-catenin which translocate to the nucleus and transcriptionally upregulate the expression of Inhibitor of DNA-binding/differentiation protein 3 (ID3). ID3 interacts with scleraxis, a basic helix-loop-helix transcription factor, to inhibit scar-associated collagen types 1α2 and 3α1 production by fibroblasts. We also showed ANGPTL4 interaction with cadherin-11 in human scar tissue. Our findings highlight a central role for matricellular proteins such as ANGPTL4 in the attenuation of collagen expression and may have a broader implication for other fibrotic pathologies.ASTAR (Agency for Sci., Tech. and Research, S’pore)Published versio

    Elevation of adenylate energy charge by angiopoietin-like 4 enhances epithelial–mesenchymal transition by inducing 14-3-3γ expression

    No full text
    Metastatic cancer cells acquire energy-intensive processes including increased invasiveness and chemoresistance. However, how the energy demand is met and the molecular drivers that coordinate an increase in cellular metabolic activity to drive epithelial–mesenchymal transition (EMT), the first step of metastasis, remain unclear. Using different in vitro and in vivo EMT models with clinical patient’s samples, we showed that EMT is an energy-demanding process fueled by glucose metabolism-derived adenosine triphosphate (ATP). We identified angiopoietin-like 4 (ANGPTL4) as a key player that coordinates an increase in cellular energy flux crucial for EMT via an ANGPTL4/14-3-3γ signaling axis. This augmented cellular metabolic activity enhanced metastasis. ANGPTL4 knockdown suppresses an adenylate energy charge elevation, delaying EMT. Using an in vivo dual-inducible EMT model, we found that ANGPTL4 deficiency reduces cancer metastasis to the lung and liver. Unbiased kinase inhibitor screens and Ingenuity Pathway Analysis revealed that ANGPTL4 regulates the expression of 14-3-3γ adaptor protein via the phosphatidylinositol-3-kinase/AKT and mitogen-activated protein kinase signaling pathways that culminate to activation of transcription factors, CREB, cFOS and STAT3. Using a different mode of action, as compared with protein kinases, the ANGPTL4/14-3-3γ signaling axis consolidated cellular bioenergetics and stabilized critical EMT proteins to coordinate energy demand and enhanced EMT competency and metastasis, through interaction with specific phosphorylation signals on target proteins.MOE (Min. of Education, S’pore)Published versio

    Targeting metabolic flexibility via angiopoietin-like 4 protein sensitizes metastatic cancer cells to chemotherapy drugs

    No full text
    Abstract Overcoming multidrug resistance has always been a major challenge in cancer treatment. Recent evidence suggested epithelial-mesenchymal transition plays a role in MDR, but the mechanism behind this link remains unclear. We found that the expression of multiple ABC transporters was elevated in concordance with an increased drug efflux in cancer cells during EMT. The metastasis-related angiopoietin-like 4 (ANGPTL4) elevates cellular ATP to transcriptionally upregulate ABC transporters expression via the Myc and NF-ÎşB signaling pathways. ANGPTL4 deficiency reduced IC50 of anti-tumor drugs and enhanced apoptosis of cancer cells. In vivo suppression of ANGPTL4 led to higher accumulation of cisplatin-DNA adducts in primary and metastasized tumors, and a reduced metastatic tumor load. ANGPTL4 empowered cancer cells metabolic flexibility during EMT, securing ample cellular energy that fuels multiple ABC transporters to confer EMT-mediated chemoresistance. It suggests that metabolic strategies aimed at suppressing ABC transporters along with energy deprivation of EMT cancer cells may overcome drug resistance

    Angiopoietin-like 4 Increases Pulmonary Tissue Leakiness and Damage during Influenza Pneumonia

    Get PDF
    Excessive host inflammatory responses negatively impact disease outcomes in respiratory infection. Host-pathogen interactions during the infective phase of influenza are well studied, but little is known about the host’s response during the repair stage. Here, we show that influenza infection stimulated the expression of angiopoietin-like 4 (ANGPTL4) via a direct IL6-STAT3-mediated mechanism. ANGPTL4 enhanced pulmonary tissue leakiness and exacerbated inflammation-induced lung damage. Treatment of infected mice with neutralizing anti-ANGPTL4 antibodies significantly accelerated lung recovery and improved lung tissue integrity. ANGPTL4-deficient mice also showed reduced lung damage and recovered faster from influenza infection when compared to their wild-type counterparts. Retrospective examination of human lung biopsy specimens from infection-induced pneumonia with tissue damage showed elevated expression of ANGPTL4 when compared to normal lung samples. These observations underscore the important role that ANGPTL4 plays in lung infection and damage and may facilitate future therapeutic strategies for the treatment of influenza pneumonia

    ANGPTL4 T266M variant is associated with reduced cancer invasiveness

    No full text
    Angiopoietin-like 4 (ANGPTL4) is a secretory protein that can be cleaved to form an N-terminal and a C-terminal protein. Studies performed thus far have linked ANGPTL4 to several cancer-related and metabolic processes. Notably, several point mutations in the C-terminal ANGPTL4 (cANGPTL4) have been reported, although no studies have been performed that ascribed these mutations to cancer-related and metabolic processes. In this study, we compared the characteristics of tumors with and without wild-type (wt) cANGPTL4 and tumors with cANGPTL4 bearing the T266M mutation (T266M cANGPTL4). We found that T266M cANGPTL4 bound to integrin α5β1 with a reduced affinity compared to wt, leading to weaker activation of downstream signaling molecules. The mutant tumors exhibited impaired proliferation, anoikis resistance, and migratory capability and had reduced adenylate energy charge. Further investigations also revealed that cANGPTL4 regulated the expression of Glut2. These findings may explain the differences in the tumor characteristics and energy metabolism observed with the cANGPTL4 T266M mutation compared to tumors without the mutation.MOE (Min. of Education, S’pore)Accepted versio

    Angiopoietin-like 4 Mediates Colonic Inflammation by Regulating Chemokine Transcript Stability via Tristetraprolin

    No full text
    Many gastrointestinal diseases exhibit a protracted and aggravated inflammatory response that can lead to hypercytokinaemia, culminating in extensive tissue damage. Recently, angiopoietin-like 4 (ANGPTL4) has been implicated in many inflammation-associated diseases. However, how ANGPTL4 regulates colonic inflammation remains unclear. Herein, we show that ANGPTL4 deficiency in mice (ANGPTL4−/−) exacerbated colonic inflammation induced by dextran sulfate sodium (DSS) or stearic acid. Microbiota was similar between the two genotypes prior DSS challenge. A microarray gene expression profile of the colon from DSS-treated ANGPTL4−/− mice was enriched for genes involved in leukocyte migration and infiltration, and showed a close association to inflamed ulcerative colitis (UC), whereas the profile from ANGPTL4+/+ littermates resembled that of non-inflamed UC biopsies. Bone marrow transplantation demonstrates the intrinsic role of colonic ANGPTL4 in regulating leukocyte infiltration during DSS-induced inflammation. Using immortalized human colon epithelial cells, we revealed that the ANGPTL4-mediated upregulation of tristetraprolin expression operates through CREB and NF-κB transcription factors, which in turn, regulates the stability of chemokines. Together, our findings suggest that ANGPTL4 protects against acute colonic inflammation and that its absence exacerbates the severity of inflammation. Our findings emphasize the importance of ANGPTL4 as a novel target for therapy in regulating and attenuating inflammation.MOE (Min. of Education, S’pore)Published versio
    corecore