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SUMMARY

Excessive host inflammatory responses negatively
impact disease outcomes in respiratory infection.
Host-pathogen interactions during the infective
phase of influenza are well studied, but little is known
about the host’s response during the repair stage.
Here, we show that influenza infection stimulated
the expression of angiopoietin-like 4 (ANGPTL4) via
a direct IL6-STAT3-mediated mechanism. ANGPTL4
enhanced pulmonary tissue leakiness and exacer-
bated inflammation-induced lung damage. Treat-
ment of infectedmicewith neutralizing anti-ANGPTL4
antibodies significantly accelerated lung recovery
and improved lung tissue integrity. ANGPTL4-defi-
cient mice also showed reduced lung damage
and recovered faster from influenza infection when
compared to theirwild-type counterparts. Retrospec-
tive examination of human lung biopsy specimens
from infection-induced pneumonia with tissue dam-
age showed elevated expression of ANGPTL4 when
compared to normal lung samples. These observa-
tions underscore the important role that ANGPTL4
plays in lung infection and damage and may facilitate
future therapeutic strategies for the treatment of influ-
enza pneumonia.
INTRODUCTION

The occurrence of annual epidemics and random global

pandemics of influenza exerts a large public health burden

worldwide (Mizgerd, 2006; Armstrong et al., 1999). However,

designing effective vaccines and treatment options has proven

challenging in view of the rapid evolution of the virus. While

many aspects of host-pathogen interactions during the course

of an influenza infection have been studied, there is less informa-
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tion on the host response during the repair stage of an infection

(Mizgerd, 2008). A better understanding of the host response

during the pulmonary repair phase may facilitate innovative

treatment strategies. Host-specific biomarkers, indicative of

the severity of lung tissue damage, could be exploited to delin-

eate opportunities for therapeutic intervention.

Host immune responses are extremely important for contain-

ing influenza infections (Julkunen et al., 2000). Through the

combined action of innate and adaptive immune responses,

the infectious pathogen becomes inactivated and cleared from

the body, repair processes start to resolve the tissue damage,

and long-term immunity is ultimately established. However,

excessive and prolonged inflammation may be detrimental to

the host and contribute to the greater morbidity and mortality

associated with influenza-induced inflammatory injury (Akaike

et al., 1996; Monsalvo, 2010; Nicholls and Peiris, 2005; Buch-

weitz et al., 2007). Exaggerated inflammatory responses in

the lung parenchyma can destroy alveoli, induce excessive

edema, precipitate hypoxia, and cause pulmonary impairment

(Narasaraju et al., 2011). Studies have documented that inflam-

matory injury to the lungs represents a major factor for the

fatalities associated with pandemic H1N1-2009, highly patho-

genic avian influenza viruses, and severe acute respiratory syn-

drome (SARS) coronavirus (Monsalvo, 2010; Nicholls and Peiris,

2005). Although inflammatory processes represent important

therapeutic targets, anti-inflammatory therapies may also inhibit

critical immune functions that mediate pathogen clearance, and

they run the risk of enhancing pathogen replication and second-

ary infection (Uchide and Toyoda, 2011; Snelgrove et al., 2006;

Aldridge et al., 2009; Ballinger and Standiford, 2010). An ideal

treatment regimen should minimize the tissue damage caused

by inflammation and facilitate recovery without interfering with

the host’s antiviral and antibacterial responses.

Angiopoietin-like 4 (ANGPTL4) belongs to a family of angio-

genic-regulating, secreted proteins that bear a high similarity

to members of the angiopoietin (ANG) family. However,

ANGPTL4 does not bind to ANG receptor TIE1/2, indicating

that ANGPTL4 exerts its distinct functions via a different mecha-

nism from ANG proteins (Zhu et al., 2012; Grootaert et al., 2012).
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Native full-length ANGPTL4 (flANGPTL4) contains a secretory

signal peptide, an N-terminal coiled-coil structure, and a C-ter-

minal fibrinogen-like domain. ANGPTL4 undergoes proteolytic

processing by proprotein convertases at the linker region,

thereby releasing the N-terminal region (nANGPTL4) and the

monomeric C-terminal portion (cANGPTL4) (Zhu et al., 2012;

Grootaert et al., 2012). The nANGPTL4 assembles into oligo-

meric structures, which is important for its function as a lipopro-

tein lipase inhibitor (Lei et al., 2011; Dijk and Kersten, 2014). The

cANGPTL4 interacts with integrin b1/5, vascular endothelial

(VE)-cadherin, or claudin-5 to trigger intracellular pathways that

aid wound healing and support tumor growth and metastasis

(Goh et al., 2010a, 2010b; Huang et al., 2011; Zhu et al., 2011).

The expression of ANGPTL4 is elevated by numerous stimuli

that are also involved in influenza pneumonia, including gluco-

corticoids, transforming growth factor b, and hypoxia-inducible

factor 1-a (HIF1-a) (Zhu et al., 2012; Grootaert et al., 2012).

Furthermore, ANGPTL4 compromises the integrity of endothelial

vascular junction by integrin signaling and disruption of intercel-

lular VE-cadherin and claudin-5 cluster (Huang et al., 2011).

Interestingly, pulmonary edema due to vascular leakiness is

a component of the fully developed viral lesion in the mouse

(Harford et al., 1950). However, to our knowledge, the role of

ANGPTL4 has not been studied in detail in influenza pneumonia,

and study on this host response factor may open door to future

intervention strategies. Thus in this study, we elucidate the role

of host response protein ANGPTL4 during influenza pneumonia.

RESULTS

ANGPTL4 Expression Is Elevated in Influenza Virus-
Infected Lungs
To investigate if ANGPTL4 is involved in the host response to

influenza, we examined ANGPTL4 expression in mice infected

with the PR8 influenza A H1N1 virus that is related to the 1918

pandemic influenza virus. The infection was performed via intra-

tracheal inoculation with a nonlethal PR8 viral challenge that was

sufficient to cause serious pulmonary damage. Viral replication

was detected on bronchial structures at 3 days postinfection

(dpi) and peaked at 5 dpi, as indicated by the presence of NS1

viral protein (Figure 1A). Virus was also detected in alveolar

type II epithelial cells throughout the lungs by coimmunofluores-

cence staining with surfactant protein C (Figure 1B). At day 7, the

viral protein expression began to decrease, and it became unde-

tectable at 9 dpi (Figure 1A). The viral replication profile during

the disease progression was further confirmed by qPCR of viral

nucleoprotein RNA from infected lungs (Figure 1C). In addition,

the expression of interferon-g (IFN-g) and interleukin-6 (IL-6),

cytokines critical for innate and adaptive immunity against viral

infections, peaked at 5 dpi (Figure 1C).

H&E staining of infected lung sections revealed that bronchial

cells were damaged at 5 dpi, corresponding to the peak of viral

load (Figure S1A). We observed extensive lung tissue damage

that was marked by large regions of pulmonary hemorrhage

and infiltration of host immune cells at 13 dpi (Figure S1A).

Inflammatory cells, such as macrophages and neutrophils, infil-

trated the alveolar spaces of infected lungs, causing tissue dam-

age and bleeding (Figure S1B). Together with damaged tissue
Ce
debris, the infiltrated cells formed dense cell clusters and filled

up the alveolar spaces. In our model, the mice recovered from

the infection, which allowed us to investigate the events that

occurred during the recovery phase. Indeed, overall recovery

of tissue integrity was observed at 19 dpi (Figure S1A).

Next, we determined the kinetics of ANGPTL4 mRNA and

protein levels in the infected lungs by qPCR and immunoblot

analyses, respectively. ANGPTL4 mRNA was significantly upre-

gulated at day 5 and remained elevated until 9 dpi. Thereafter,

its expression decreased, reaching the basal level by 17 dpi (Fig-

ure 1D). Elevated levels of ANGPTL4 protein, specifically

cANGPTL4, were detected in lung tissue homogenates at day

7 and remained elevated until 19 dpi, compared to day 0 controls

(Figure 1E). We also examined the spatiotemporal expression of

cANGPTL4 during influenza infection by immunofluorescence

staining (Figure 1F). At day 0, cANGPTL4 protein was restricted

to tubular structures such as the blood vessels and bronchioles

(Figure 1F). At 5 and 13 dpi, corresponding to the peaks of

ANGPTL4 mRNA and protein respectively, we observed stron-

ger cANGPTL4 staining within the inflamed regions infiltrated

by immune cells (Figure 1F). To eliminate the possible interfer-

ence from autofluorescence, we provided technical controls

for the staining using isotype immunoglobulin G (IgG) control

and Alexa Fluor 647 fluorescence antibody. Both the blood ves-

sels and infiltrated alveolar space showed positive staining with

anti-cANGPTL4mousemonoclonal antibody as the primary anti-

body and anti-mouse Alexa Fluor 647 as the secondary anti-

body. In contrast, no staining of the blood vessel and infiltrated

alveolar space at the corresponding regions in neighboring slide

was observed when control IgG and anti-mouse Alexa Fluor 647

antibody were used (Figure S1C). The result confirmed the

ANGPTL4 signal was specific. To confirm that the elevated

cANGPTL4 expression was not virus-strain specific, we exam-

ined its expression in the lungs of mice challenged with a suble-

thal dose of a mouse-adapted H3N2 strain. H3N2 infection of

BALB/c mice exhibited increased levels of cANGPTL4 as well

as full-length ANGPTL4. The cANGPTL4 protein peaked at 10

dpi, while the expression of native ANGPTL4 protein remained

elevated at 15 dpi during the recovery of lung tissues (Figures

S1D and S1E). This confirmed that ANGPTL4 upregulation was

not restricted to a specific strain of influenza virus or mouse.

Notably, different strains of virus and mouse showed distinct

ANGPTL4 mRNA and protein expression profiles.

ANGPTL4Expression Is Regulated by aSTAT3-Mediated
Mechanism
As the ANGPTL4 mRNA expression profile mirrored the pattern

of viral replication, we asked if viral infection could influence

the expression of ANGPTL4. Dual immunofluorescence staining

for NS1 viral protein and cANGPTL4 revealed that infected alve-

olar type II epithelial cells displayed cANGPTL4 staining,

whereas the uninfected alveolar type II epithelial cells within

the same lung did not exhibit cANGPTL4 staining (Figure 2A).

Although Clara cells were also stained positive for ANGPTL4

(Figure S2A), we did not detect any significant ANGPTL4

mRNA level in Clara cells isolated by laser capture microdissec-

tion (Figure S2B), suggesting that the ANGPTL4 staining most

likely derived from secretion from heterotypic cell types. Next,
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Figure 1. Elevated cANGPTL4 mRNA and Protein Expression during Influenza Virus-Induced Pneumonia

C57BL/6J mice were infected with the PR8 virus, and lungs were harvested at the indicated days postinfection (dpi).

(A) Representative immunofluorescence staining for viral protein NS1 (green) and cell nuclei (blue) of influenza-infected lungs. Scale bar, 50 mm.

(B) Representative dual immunofluorescence staining of alveolar epithelial type II cells (SPC, red) and viral protein NS1 (green) showing viral infection in the

alveolar space is limited to alveolar epithelial type II cells. Scale bar, 60 mm.

(C) Relative mRNA expression of viral NPmRNA (means ± SEM, n = 5) and protein levels (means ± SEM, n = 4) of cytokine interleukin-6 (IL-6, blue) and interferon-

g (IFN-g, red) in BALF as determined by Bioplex as described in Experimental Procedures.

(D and E) Relative expression of ANGPTL4 mRNA (D) and protein (E) in lungs harvested at the indicated dpi. mRNA expression was normalized to that of the

housekeeping gene ribosomal protein L27, which did not change under any of the studied experimental conditions (means ± SEM, n = 5). b-Tubulin served as a

loading and transfer control for immunoblotting.

(F) Representative H&E images and immunofluorescence-stained images of ANGPTL4 (green) counterstained with DAPI (blue) of infected lung sections. Scale

bar, 1,000 mm.

All the staining pictures shown in this figure are representative images from 15 mice for each time point. See also Figure S1.
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Figure 2. ANGPTL4 Expression Is Regulated by a STAT3-Mediated Mechanism

(A) Dual immunofluorescence staining of cANGPTL4 (green) and viral protein NS1 (red). Staining images are representative of five mice. Scale bar, 50 mm.

(B) Relative mRNA (left panel) and protein (middle and right panels) levels of ANGPTL4 in lungs of mice infected with a lethal dose of PR8 virus (1,000 pfu). mRNA

expression was normalized to that of the housekeeping gene ribosomal protein L27, which did not change under any of the studied experimental conditions

(means ± SEM, n = 3). b-Tubulin served as a loading and transfer control for immunoblotting.

(legend continued on next page)
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we examined ANGPTL4 expression during influenza infection of

mice with a lethal dose of PR8 virus (1,000 plaque-forming units

[pfu]). We detected an earlier upregulation of ANGPTL4 mRNA

and protein at 3 dpi, while the expression of native ANGPTL4

and cANGPTL4 remained elevated until the mice were eutha-

nized at 7 dpi (Figure 2B).

We next sought to elucidate the underlying mechanism of this

upregulation. HIF1-a has been shown to increase the expres-

sion of ANGPTL4 in endothelial cells (Zhu et al., 2012; Grootaert

et al., 2012). To investigate if HIF1-a could be responsible for

the expression of ANGPTL4 mRNA, we examined the HIF1-a

protein expression profile in our animal model. The peak

HIF1-a protein expression was detected at 13 dpi, which did

not coincide with the peak mRNA expression of ANGPTL4

(Figure S2C), suggesting HIF1-a was unlikely to be a major

regulator of ANGPTL4 at the early stages of infection. However,

we cannot exclude that HIF1-a may maintain or sustain

ANGPTL4 expression at later stages of infection. Interrogation

of GEO data sets revealed that STAT3 deficiency in pulmonary

alveolar type II epithelial cells was related to lower ANGPTL4

levels (Xu et al., 2007). Interestingly, viral infection triggered

host responses through IFN-g and IL-6 pathways, which acti-

vate STAT, and displayed overlapping profiles to the ANGPTL4

mRNA expression pattern (Figure 1C). In silico analysis of the

promoter of the mouse ANGPTL4 gene also revealed a putative

STAT-binding site (Figure 2C). Thus, we performed chromatin

immunoprecipitation (ChIP) using phospho-STAT3 (pSTAT3)

antibody on the ANGPTL4 promoter in uninfected and infected

lung tissues. The sequences spanning the STAT-binding site

were enriched in the immunoprecipitates obtained from the vi-

rus-infected lung tissues compared to uninfected tissues (Fig-

ure 2D). pSTAT3 ChIP experiments followed by re-ChIP with

p300, a STAT3 coactivator, further confirmed the existence of

direct regulation of ANGPTL4 via a STAT3-mediated mecha-

nism (Figure 2D). To further strengthen our in vivo findings, we

suppressed endogenous STAT3 expression by small interfering

RNA (siRNA) and examined the expression of ANGPTL4 in a hu-

man small airway epithelial cell culture exposed to IL-6. We

observed a significant increase in ANGPTL4 mRNA in response

to an IL-6 challenge, which was abrogated when endogenous

STAT3 was knocked down by ON-TARGETPlus siRNA (Fig-

ure S2D). We confirmed that the STAT3 protein was also

reduced by western blot analysis (Figure S2D).

The flANGPTL4 undergoes proteolytic processing to release

cANGPTL4. Furin proprotein convertase is known to cleave

flANGPTL4 (Lei et al., 2011). To determine whether furin-like

activity is present and consistent with the peak of cANGPTL4

protein expression in influenza-infected lungs, we measured

furin activity in the bronchoalveolar lavage fluid (BALF) of

mice that were sublethally infected with PR8 virus. Furin activity
(C) Schematic diagram showing the relative position of a putative STAT-binding

(D) ChIP assay was conducted using preimmune IgG or antibodies against pSTAT

infected (N) lungs. The specific region spanning STAT3 binding site of ANGPTL4

negative control.

(E) Bar graph shows furin activity in the BALF extracts at the indicated time points

(dark blue), ANGPTL4 mRNA (red), and protein (light blue) were plotted.

See also Figure S2.
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in the BALF started to increase at 5 dpi, coinciding with the

peak in virus titer (Figure 2E). Importantly, the furin activity

profile overlapped significantly with that of cANGPTL4 protein

(Figure 2E). To strengthen the role of furin in ANGPTL4 cleav-

age, we performed similar experiments in the presence or

absence of a furin inhibitor. Furin inhibitor was added to

BALF taken from 11 dpi, a time point when the furin activity

was elevated. Recombinant flANGPTL4 protein with FLAG

tag at the C terminus was used as exogenous substrate. We

detected a reduced cANGPTL4:flANGPTL4 ratio in BALF con-

taining furin inhibitor when compared to BALF alone (Fig-

ure S2E), confirming that furin was a major contributor of post-

translational cleavage of flANGPTL4 in our animal model.

Taken together, our data demonstrated that ANGPTL4 mRNA

was upregulated via a STAT3-dependent pathway during influ-

enza pneumonia. The concomitant increase in furin activity

subsequently cleaved flANGPTL4 to generate cANGPTL4,

which peaked at 13 dpi, corresponding to extensive lung injury

marked by large regions of pulmonary hemorrhage and infiltra-

tion of host immune cells.

Immunoneutralization of cANGPTL4 Significantly
Reduces Tissue Leakiness to Accelerate Lung Recovery
To understand the role of cANGPTL4 in influenza pathogenesis,

we investigated the in vivo effect of a neutralizing cANGPTL4

monoclonal antibody (mAb; clone 3F4F5) on the host response

to influenza viral pneumonia. We employed two treatment strate-

gies based on the stage of disease progression (Figure 3A). Vi-

rus-induced inflammation caused severe lung damage, which

was observed until 13 dpi. Thereafter, tissue regeneration began

to restore lung structural integrity and function. Thus, we defined

the period before 13 dpi as the ‘‘damage window,’’ and days af-

ter 13 dpi as the ‘‘recovery window.’’ Daily intravenous injections

of anti-ANGPTL4 mAb (10 mg/kg body weight) were adminis-

tered for 5 days starting either at 6 dpi during the damage win-

dow or day 13 during the recovery period (Figure 3A). Negative

control groups included mock-infected mice that received either

isotype-matched control mouse IgG or anti-cANGPTL4 mAb

alone. Mice infected with influenza virus and treated with control

mouse IgG served as another control group. Lung tissues were

harvested 24 hr after the last injection.

The anti-cANGPTL4 mAb treatment during the ‘‘damage win-

dow’’ did not significantly alleviate the early inflammation-

induced lung damage (Figure S3A). In contrast, anti-cANGPTL4

mAb treatment during the recovery stage resulted in reduced

lung damage and a significant improvement in tissue recovery

compared to control groups (Figure 3B). The alveolar spaces

showed a remarkable increase of noninfiltrated areas with

reduced pulmonary bleeding and accelerated regeneration of

alveolar type I epithelial cells (Figure 3C). To pursue this further,
site in the mouse ANGPTL4 gene promoter.

3 (top panel) and re-ChIP with anti-p300 (bottompanel) in infected (I) andmock-

gene was amplified using appropriate primers. A control region served as a

after PR8 infection (means ± SEM, n = 10). Expression profile of viral NPmRNA



Figure 3. Immunoneutralization of cANGPTL4 Improves Lung Tissue Recovery after Influenza Infection

(A) Schematic diagram showing administration protocols during ‘‘damage’’ (yellow arrows) and ‘‘recovery’’ (blue arrows) windows. Graph shows a summary of

various events of mouse influenza infection model plotted based on earlier observations.

(legend continued on next page)
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we examined the in vivo integrity of the pulmonary vasculature

by in vivo imaging of the mice receiving anti-cANGPTL4 mAb

during the recovery period (Figure 3E). Mice were injected intra-

venously with IRDye 800CW PEG contrast agent (50 nmol/kg

body weight) 24 hr after the last mAb injection. The presence

of infrared (IR) signal indicates the accumulation of IRDye

800CW PEG in tissue due to increased leakiness of the local tis-

sue. As expected, infectedmice treated with control IgG showed

a very high IR signal in the lung compared tomock-infected mice

(Figure 3E). Infected mice treated with anti-cANGPTL4 mAb

showed a significantly subdued IR signal in the lungs compared

with control IgG treatment, indicating that immunoneutralization

of cANGPTL4 markedly abrogated tissue leakiness. Ex vivo im-

aging of resected mouse lungs confirmed the reduced accumu-

lation of IRDye 800CW PEG agent following anti-cANGPTL4

mAb therapy. Tomore precisely define the cell types responsible

for the increased tissue leakiness, we examined the cell-cell

junction of human small airway epithelial cells andmicrovascular

endothelial cells after treatment with recombinant cANGPTL4 by

immunofluorescence staining with tight junction protein zonula

occludens-1 (ZO-1). The cANGPTL4 protein perturbed the cell-

cell boundary of primary human endothelial and epithelial cells

(Figure 3D), indicating that cANGPTL4 exacerbated pulmonary

bleeding and edema and could accelerate the infiltration of im-

mune cells inside the lung tissue to aggravate tissue damage.

To further strengthen our above observation, we examined

the effect of influenza infection on wild-type (ANGPTL4+/+)

and ANGPTL4 mutant mice (knockout ANGPTL4�/� and

heterozygous ANGPTL4+/�). We observed lung damage in

ANGPTL4�/� at 11 dpi, albeit at reduced severity when

compared to influenza-infected ANGPTL4+/+ (Figure S3B).

Consistent with above observation with neutralizing anti-

cANGPTL4, infected ANGPTL4�/� mice showed rapid lung tis-

sue recovery at 18 dpi compared with ANGPTL4+/+ (Figure 3F)

and accelerated regeneration of alveolar type I epithelial cells

(Figure 3G).We also studied the effect of ANGPTL4 gene dosage

on lung tissue damage and recovery using ANGPTL4+/� mice.

Similar to cANGPTL4 antibody-treated ANGPTL4+/+mice, signif-

icant improvement in tissue recovery was observed in PR8-in-

fected ANGPTL4+/� mice when compared with ANGPTL4+/+

mice at 18 dpi, but no significant difference in tissue damage

was observed at 11 dpi (Figures S3C and S3D). We also

confirmed the observations by immunoblotting of podoplanin

(PDPN) as a marker of lung damage as well as scoring of lung

tissue damage by trained pathologist (Figures S3E and S3F).
(B) Representative H&E images of lung sections from mice either mock-infect

monoclonal antibody. Images show alveolar space, bronchiole, and pulmonary e

(C) Representative immunofluorescence staining of PDPN (red) as marker of alveo

Scale bar, 50 mm. Representative images from five mice for each group.

(D) Representative immunofluorescence staining of ZO-1 (green) of confluent hum

treated with either vehicle PBS or recombinant cANGPTL4 protein (6 mg/mL). Sc

(E) Infrared imaging of lungs in vivo (bottom panel) and ex vivo (top panel) using P

antibodies from 13 to 17 dpi, and the imagingwas performed at 18 dpi. Scale bar, 1

of fluorescence signal from the lungs was measured ex vivo by Li-Cor MousePO

(F) H&E images of lungs from ANGPTL4�/� and ANGPTL4+/+ mice infected with

(G) Immunofluorescence staining of PDPN (red) and nuclei (blue) showed tissue re

for each group are shown.

See also Figure S3.
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To explore the biological impact of anti-cANGPTL4 mAb ther-

apy on infected lungs, we performed microarray gene expres-

sion analyses of lungs of mice treated with either anti-cANGPTL4

antibody or control IgG from 13 to 17 dpi. Data analyses revealed

that mAb therapy resulted in differences in numerous major

physiological activities, including angiogenesis, lung tissue

development, inflammatory responses, and extracellular matrix

and endopeptidase activities (Figures 4A and S4). Genes

involved in the development of lung alveoli, respiratory tubes,

and blood vessels were identified in the anti-cANGPTL4 mAb-

treated infected mice, indicating earlier tissue regeneration.

The mAb treatment also dampened the inflammation-related

tissue damage, consistent with the pathological phenotype.

Taken together, our findings indicate that the functional neutral-

ization of cANGPTL4 during the tissue recovery stage promoted

lung tissue recovery and was associated with improved tissue

integrity.

cANGPTL4 Expression Is Enhanced in Human Lung
Biopsy Specimens of Patients with Infection-Induced
Pneumonia
To underscore the clinical relevance of ANGPTL4 in lung infec-

tion and lung damage, we performed a retrospective immunoflu-

orescence examination of ANGPTL4 expression in 40 archived

human lung biopsy specimens from patients either without

pneumonia or with pneumonia induced by various infections

as approved by the institutional review board of the National Uni-

versity Hospital (reference number 2012/00661). The staining

and microscopic imaging techniques were performed simulta-

neously under the same conditions, allowing the signal inten-

sity to serve as a semiquantitative measure of the cANGPTL4

expression level. In the ten pneumonia samples that were symp-

tomatic or microbe positive, we found brightly stained structures

(Figure 4B; Table S2). These structures included the thickened

layers around tubular structures as well as intensively stained

structures in the damaged alveolar regions that appeared to be

collapsed membrane-like structures (Figure 4B; Table S2).

These structures were abundant in regions with dense infiltration

or collapsed alveolar spaces. The nonpneumonia samples

showed either very weak staining or staining restricted to a thin

layer along the tubular structures, consistent with our observa-

tions in healthy mouse lung tissues (Figures 4B and 1F; Table

S2). The obstructive pneumonia sample that was not caused

by infection did not show positive staining of cANGPTL4,

which is consistent with our proposed mechanism whereby
ed or PR8-infected and treated with control isotype IgG or anti-cANGPTL4

dema. Scale bar, 100 mm.

lar type I epithelial cells and nuclei (blue) show tissue regeneration in the lungs.

anmicrovascular endothelial cell and human small airway epithelial cell cultures

ale bar, 40 mm, n = 3. Dotted scale bar, 10 mm.

EG-800 contrast agent to reveal pulmonary leakiness. Mice were treated with

cm. Representative images of threemice for each groupwere shown. Intensity

D (means ± SEM, n = 3).

sublethal PR8 at the indicated dpi. Scale bar, 100 mm.

generation in the lungs. Scale bar, 50 mm. Representative images from fivemice



Figure 4. ANGPTL4 Deficiency Reduces

Infection-Associated Pulmonary Damage

(A) Heatmaps show gene expression profiles of

influenza-infected lungs left untreated or treated

with anti-cANGPTL4 antibody (I versus A). Genes

are clustered according to their biological func-

tions. The color spectrum from green to red

depicts the fold change in LOG scale. See also

Figure S4.

(B) Representative immunofluorescence images

of cANGPTL4 expression in human lung biopsy

specimens of patients with or without pneumonia.

Scale bar, 100 mm. See also Table S2 for a com-

plete list of patient information and immunofluo-

rescence staining observations.
an infection-induced STAT pathway contributes to ANGPTL4

upregulation. These findings suggest that cANGPTL4 may be a

potential biomarker for respiratory infection and pneumonia.

Clearly, further validation with a larger patient cohort that in-

cludes human virally induced ARDS cases and other bodily fluids

such as blood and sputum will be necessary.

DISCUSSION

One of the hallmarks of influenza pneumonia is the aggra-

vated inflammatory host response accompanied by pulmonary

edema and associated acute lung injury (Mizgerd, 2008). In this

study, we showed that influenza infection elevated the expres-

sion of the host protein ANGPTL4 via direct transcriptional regu-

lation by STAT3. The spatiotemporal expression of ANGPTL4
Cell Reports 10, 654–663,
coincided with the inflammation phase

of influenza infection, localized to lung re-

gions with elevated immune cell infiltra-

tion and tissue damage. Similarly, our

analysis of human clinical infection-asso-

ciated pneumonia samples showed

higher levels of ANGPTL4 compared to

uncomplicated human lung sections.

Notably, influenza infection of ANGPTL4-

knockout mice and immunoneutralization

of ANGPTL4 in wild-type mice showed

significantly improved pulmonary tissue

integrity and accelerated recovery from

inflammation-induced tissue damage.

Recent high-throughput RNA seq-

uencing of formalin-fixed, paraffin-

embedded autopsy lung tissue samples

from the 1918 and 2009 influenza pan-

demics revealed that ANGPTL4 mRNA

was one of the most significantly upre-

gulated genes in both samples (Xiao

et al., 2013). Our interrogation of microar-

ray data from influenza-infected mouse

lungs also consistently detected elevated

ANGPTL4 expression (Pommerenke

et al., 2012). These observations under-

score the importance of ANGPTL4 in
response to pneumonia. However, its role in infected lungs re-

mained unclear. From our influenza mouse model, we observed

that the ANGPTL4 mRNA expression profile mirrored the pattern

of viral replication. Probing further, we showed that IL-6-acti-

vated STAT3 directly regulated the expression of ANGPTL4.

This is consistent with microarray analysis showing that pulmo-

nary alveolar type II epithelial cells deficient in STAT3 have lower

ANGPTL4 mRNA levels compared to their wild-type counter-

parts (Xu et al., 2007).

Furin or furin-like proprotein convertases (PCs) play multiple

roles in host response to influenza infection. Toll-like receptor

7 (TLR7) triggers antiviral immune responses by recognizing viral

single-stranded RNA in endosomes. hTLR7 is proteolytically

processed by furin-like PCs, and the C-terminal fragment of

hTLR7 selectively accumulates in endocytic compartments.
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TLR7 processing was required for its functional response to

TLR7 agonists such as R837 or influenza virus (Hipp et al.,

2013). Interestingly, we observed that the peak expression of

cANGPTL4 protein at 13 dpi was likely attributed to the increase

in activity of furin PCs that preceded and overlapped with

cANGPTL4 protein expression. Recent work showed that two

novel peptidomimetic furin inhibitors inhibit hemagglutinin cleav-

age and viral propagation of a highly pathogenic avian H7N1

influenza virus strain in vitro (Becker et al., 2012). The in vivo

effect of such furin inhibitors, which conceivably prevent the pro-

teolytic cleavage of flANGPTL4 to release cANGPTL4, on lung

tissue recovery remains to be explored.

Previous work has shown that cANGPTL4 can affect the para-

cellular permeability of blood vessels in cancer (Huang et al.,

2011; Guo et al., 2014). In vivo and ex vivo imaging of infected

mice treated with neutralizing anti-cANGPTL4 mAb revealed

diminished pulmonary tissue leakiness compared to isotype

control IgG treatment. The direct consequencewas reduced pul-

monary edema and immune cell-infiltrated lung regions. The

overall lung tissue integrity was improved and the alveolar space

appeared to be well recovered for normal function as supported

by microarray analysis. Administration of anti-cANGPTL4 mAb

during the damage window, when cANGPTL4 protein levels

were low, showed no observable difference compared to con-

trol. Thus, targeting cANGPTL4 to modulate tissue leakiness

along with its collateral benefits is a promising approach toward

the development of therapy for influenza treatment, specifically

lung recovery. Our finding that host protein ANGPTL4 partici-

pates in pulmonary leakiness and lung injury responses during

influenza pneumonia is an important step toward a better under-

standing of influenza pathogenesis and how it can be manipu-

lated to reduce the burden of pneumonia.
EXPERIMENTAL PROCEDURES

Mice, Viruses, and Infections

Female 8- to 12-week-old C57BL/6J mice and BALB/c mice were purchased

from the Biological Resource Centre, Biopolis, Singapore. Wild-type mice

and mice heterozygous for ANGPTL4 (C57/B6 background) were obtained

from the Mutant Mouse Regional Resource Center (MMRRC), an NIH-funded

strain repository, and were donated to the MMRRC by Genentech. ANGPTL4

KO mice were identified using RT-PCR quantification of ANGPTL4 expres-

sion compared to wild-type mice. Influenza H1N1virus A/PR/8/34 strain

(PR8) was purchased from the American Type Culture Collection. PR8 was

propagated in embryonated eggs at 37�C for 72 hr, and the allantoic fluid

was harvested as a viral stock. Virus titers were determined by the plaque

assay via infection of Madin-Darby canine kidney (MDCK) cells. Mice were

housed in BSL2 facilities and infected with a sublethal dose of PR8 (30 pfu

in 75 ml of PBS [pH 7.4] per mouse) or with a lethal dose (1,000 pfu) by intra-

tracheal inhalation under anesthesia. Mice were anesthetized using a keta-

mine/xylazine cocktail. When fully anesthetized, the mouse was held up

and 30 pfu of PR8 virus in 75 ml of PBS was introduced into the back of

its mouth to be breathed into the trachea, with its tongue held tightly to pre-

vent swallowing of the liquid pipetted in. Lungs were harvested from anes-

thetized mice at indicated time points and stored at �80�C until further

use. Female 8- to 12-week-old BALB/c mice were infected with a sublethal

dose of mouse-adapted influenza A/Aichi/2/68 H3N2 virus (1,500 pfu). Fe-

male 8- to 12-week-old ANGPTL4�/� mice were infected also using 30 pfu

of PR8 virus for comparison with ANGPTL4+/+ mice. Lung tissues were har-

vested for further analysis at 11 and 18 dpi. All animal protocols were

approved by the respective institutional animal care and use committees
662 Cell Reports 10, 654–663, February 10, 2015 ª2015 The Authors
at National University of Singapore (050/11) and Nanyang Technological Uni-

versity (ARF SBS/NIE-A0200AZ).

Antibody Treatment of Mice

Anti-cANGPTL4 mAb (clone 3F4F5) was produced using hybridoma as

described previously (Goh et al., 2010a, 2010b; Zhu et al., 2011). Mice were

intraperitoneally injected daily with the antibody in 200 ml saline at a dose of

10 mg/kg body weight on 6–10 dpi (harvested on day 11) or on 13–17 dpi (har-

vested on day 18). More details on the experimental procedures can be found

in Supplemental Experimental Procedures.

In Vivo Imaging of Mice

Mice were mock infected with heat-inactivated influenza virus, infected with

influenza virus and injected with control IgG, or infected with influenza virus

and treated with anti-cANGPTL4 antibody on 13–17 dpi as described above.

At the day of lung harvesting, mice were injected through the tail vein with

IRDye 800CW PEG contrast agent (Li-Cor 926-50401) and subjected to

in vivo imaging under anesthesia, using the Li-Cor MousePOD in vivo imag-

ing facility. The IR fluorescent-tagged PEG800 was used to detect tissue

leakiness when the tissue exhibited abnormally high paracellular perme-

ability. Following imaging, the lungs of the mice were harvested and reim-

aged, and quantification of fluorescence signal was done according to the

manufacturer’s instructions.
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