6,255 research outputs found

    Gaussian fields and Gaussian sheets with generalized Cauchy covariance structure

    Get PDF
    Two types of Gaussian processes, namely the Gaussian field with generalized Cauchy covariance (GFGCC) and the Gaussian sheet with generalized Cauchy covariance (GSGCC) are considered. Some of the basic properties and the asymptotic properties of the spectral densities of these random fields are studied. The associated self-similar random fields obtained by applying the Lamperti transformation to GFGCC and GSGCC are studied.Comment: 32 pages, 6 figure

    Topological phase states of the SU(3) QCD

    Full text link
    We consider the topologically nontrivial phase states and the corresponding topological defects in the SU(3) d-dimensional quantum chromodynamics (QCD). The homotopy groups for topological classes of such defects are calculated explicitly. We have shown that the three nontrivial groups are pi_3 SU(3)=Z, pi_5 SU(3)=Z, and pi_6 SU(3)=Z_6 if 3 < d < 6. The latter result means that we are dealing exactly with six topologically different phase states. The topological invariants for d=3,5,6 are described in detail.Comment: LATEX2e, 5 page

    Managing risk in a four-digit number game

    Get PDF
    SIAM Review444601-615SIRE

    Finite Temperature Casimir Effect and Dispersion in the Presence of Compactified Extra Dimensions

    Full text link
    Finite temperature Casimir theory of the Dirichlet scalar field is developed, assuming that there is a conventional Casimir setup in physical space with two infinitely large plates separated by a gap R and in addition an arbitrary number q of extra compacified dimensions. As a generalization of earlier theory, we assume in the first part of the paper that there is a scalar 'refractive index' N filling the whole of the physical space region. After presenting general expressions for free energy and Casimir forces we focus on the low temperature case, as this is of main physical interest both for force measurements and also for issues related to entropy and the Nernst theorem. Thereafter, in the second part we analyze dispersive properties, assuming for simplicity q=1, by taking into account dispersion associated with the first Matsubara frequency only. The medium-induced contribution to the free energy, and pressure, is calculated at low temperatures.Comment: 25 pages, one figure. Minor changes in the discussion. Version to appear in Physica Script

    Modeling Single-File Diffusion by Step Fractional Brownian Motion and Generalized Fractional Langevin Equation

    Full text link
    Single-file diffusion behaves as normal diffusion at small time and as anomalous subdiffusion at large time. These properties can be described by fractional Brownian motion with variable Hurst exponent or multifractional Brownian motion. We introduce a new stochastic process called Riemann-Liouville step fractional Brownian motion which can be regarded as a special case of multifractional Brownian motion with step function type of Hurst exponent tailored for single-file diffusion. Such a step fractional Brownian motion can be obtained as solution of fractional Langevin equation with zero damping. Various types of fractional Langevin equations and their generalizations are then considered to decide whether their solutions provide the correct description of the long and short time behaviors of single-file diffusion. The cases where dissipative memory kernel is a Dirac delta function, a power-law function, and a combination of both of these functions, are studied in detail. In addition to the case where the short time behavior of single-file diffusion behaves as normal diffusion, we also consider the possibility of the process that begins as ballistic motion.Comment: 12 pages, 7 figure
    corecore