2,242 research outputs found

    A single-layer tuneable microwave absorber using an active FSS

    Get PDF
    An experimental single-layer active microwave absorber in described. The absorber is a planar structure based upon the topology of a Salisbury screen, but in which the conventional resistive layer is replaced by an active frequency selective surface (FSS) controlled by pin diodes. The resulting structure has superior reflectivity-bandwidth characteristics compared to conventional passive absorbers of corresponding thickness. Measured data are presented and show that the reflectivity response of the absorber can be controlled over the frequency band from 9 to 13 GHz

    The phase-switched screen

    Get PDF
    Conventional (passive) radar-absorbent materials operate either by phase cancellation or by absorbing incident electromagnetic energy and converting it into heat. This paper examines a new type of active "absorber," called the phase-switched screen (PSS). The PSS operates quite differently from passive absorbers in that it exhibits an apparently low value of reflectivity by redistributing the electromagnetic energy incident upon it over a bandwidth that is wide enough to ensure that little reflected energy falls within the pass-band of the receiver. The discussion considers the basic temporal and spectral properties of several PSS topologies, and includes measured data on both planar and cylindrical PSS structures

    Influence of switching-waveform characteristics on the performance of a single-layer-phase switched screen

    Get PDF
    Conventional microwave-absorbing materials rely on the absorption and conversion into heat, of the electromagnetic energy incident upon them. In an alternative approach, the phase-switched screen (PSS) applies phase modulation to the reflected signal so that the energy is redistributed into sidebands with, ideally, none remaining at the original incident carrier frequency f/sub c/. Hence, by adjusting the frequency and shape of the waveform that controls the PSS reflection coefficient, these sidebands may be positioned outside the pass-band of a receiver tuned to f/sub c/. An investigation has been carried out to determine how the choice of control waveform and switching frequency influence the PSS performanc

    A smart radar absorber based on the phase-switched screen

    Get PDF
    Although conventional (i.e., passive) radar absorbers are widely used for modifying the radar cross-section (RCS) of current military platforms, such absorbers may not have adequate performance to satisfy future requirements. Active absorbers, however, offer the potential to overcome the so-called Rozanov performance limit and to enable additional smart functionality such as monitoring damage, adaptive control of RCS or target appearance, identification-friend-or-foe, and absorb-while-scan. This paper outlines the concept and basic properties of a novel type of active radar absorber, the so-called phase-switched screen (PSS). The basic PSS topology is then modified so as to enable it to operate as a smart radar absorber when used together with an external sensor and feedback control loop. System implementation issues and the optimum choice of design parameters for a range of operational scenarios are discussed, and theoretical predictions are supported by measured performance data

    Investigations of the effect of nonmagnetic Ca substitution for magnetic Dy on spin-freezing in Dy2Ti2O7

    Get PDF
    Physical properties of partially Ca substituted hole-doped Dy2Ti2O7 have been investigated by ac magnetic susceptibility \chi_ac(T), dc magnetic susceptibility \chi(T), isothermal magnetization M(H) and heat capacity C_p(T) measurements on Dy1.8Ca0.2Ti2O7. The spin-ice system Dy2Ti2O7 exhibits a spin-glass type freezing behavior near 16 K. Our frequency dependent \chi_ac(T) data of Dy1.8Ca0.2Ti2O7 show that the spin-freezing behavior is significantly influenced by Ca substitution. The effect of partial nonmagnetic Ca2+ substitution for magnetic Dy3+ is similar to the previous study on nonmagnetic isovalent Y3+ substituted Dy2-xYxTi2O7 (for low levels of dilution), however the suppression of spin-freezing behavior is substantially stronger for Ca than Y. The Cole-Cole plot analysis reveals semicircular character and a single relaxation mode in Dy1.8Ca0.2Ti2O7 as for Dy2Ti2O7. No noticeable change in the insulating behavior of Dy2Ti2O7 results from the holes produced by 10% Ca2+ substitution for Dy3+ ions.Comment: 9 pages, 7 figures, 1 tabl

    A Novel Longitudinal Mode in the Coupled Quantum Chain Compound KCuF3

    Full text link
    Inelastic neutron scattering measurements are reported that show a new longitudinal mode in the antiferromagnetically ordered phase of the spin-1/2 quasi-one-dimensional antiferromagnet KCuF3. This mode signals the cross-over from one-dimensional to three-dimensional behavior and indicates a reduction in the ordered spin moment of a spin-1/2 antiferromagnet. The measurements are compared with recent quantum field theory results and are found to be in excellent agreement. A feature of the data not predicted by theory is a damping of the mode by decay processes to the transverse spin-wave branches.Comment: 9 pages of text plus 4 postscript figures (1 color

    Scattering and Iron Fluorescence Revealed During Absorption Dips in Circinus X-1

    Get PDF
    We show that dramatic spectral evolution associated with dips occurring near phase zero in RXTE observations of Cir X-1 is well-fit by variable and at times heavy absorption (N_H > 10^24 cm^-2) of a bright component, plus an underlying faint component which is not attenuated by the variable column and whose flux is ~10% of that of the unabsorbed bright component. A prominent Fe emission line at ~6.5 keV is evident during the dips. The absolute line flux outside the dips is similar to that during the dips, indicating that the line is associated with the faint component. These results are consistent with a model in which the bright component is radiation received directly from a compact source while the faint component may be attributed to scattered radiation. Our results are also generally consistent with those of Brandt et al., who found that a partial- covering model could explain ASCA spectra of a low-to-high transition in Cir X-1. The relative brightness of the two components in our model requires a column density of ~2*10^23 cm^-2 if the faint component is due to Thomson scattering in material that mostly surrounds the source. We find that illumination of such a scattering cloud by the observed direct component would produce an Fe K-alpha fluorescence flux that is in rough agreement with the flux of the observed emission line. We also conclude that if the scattering medium is not highly ionized, our line of sight to the compact source does not pass through it. Finally, we discuss simple pictures of the absorbers responsible for the dips themselves.Comment: Accepted for publication in The Astrophysical Journal (23 pages, including 11 figures
    corecore