231 research outputs found
Policy and Legislation Evaluation and Scrutiny by Parliament of Sri Lanka
Sri Lanka is a democratic socialist republic with a unicameral legislature, in which sovereignty is in the People which includes the powers of the government, fundamental rights, and franchise. The sovereignty of the people is exercised and enjoyed separately by the Executive, the Legislature, and the Judiciary as articulated by the Constitutional provisions. In this process, the timely and in-depth evaluation of policies and legislations are important, to ensure accountability by any stakeholder institution towards the People of the country. In Parliament's perspective, this task is covered by the oversight role which is one of the main roles of Parliament.
This paper aims at discussing the mechanisms that the Parliament of Sri Lanka has employed, in exercising those powers of the People and the paper discusses the methodologies that the Parliament uses in policy evaluation as well as in ensuring legislative scrutiny, especially through the Parliamentary Committee System. The paper analyses the outcome of those mechanisms in upholding and protecting the rights of the citizen. The paper identifies the achievements as well as challenges and analyzes the use of new concepts and methodologies in improving the service rendered to the citizen by Parliament and suggests ways in which any such gaps could be filled. The study of the paper focuses on the 8th Parliament which covered the duration from the year 2015 to 2020 and the 9th Parliament, which is the present Parliament, with regard to the area of interest
The Angiosperm Stem Hemiparasitic Genus Cassytha (Lauraceae) and its host interactions : a review
Cassytha, also known as laurel dodder or love vine, is a stem hemiparasite of the Lauraceae family. It has long been used for medicinal purposes in many countries and has increasingly influenced agricultural and natural ecosystems by its effects on a wide range of host species. Previous studies have focused on the taxonomy and evolutionary position of different Cassytha, with the pan-tropical species Cassytha filiformis being the most widely studied. However, Cassytha–host interactions have never been reviewed, which is an essential issue related to the understanding of mechanisms underlying plant hemiparasitic and the assessment of benefits and damage caused by aerial parasitic plants. This review explores the parasitic habits, worldwide distribution, and host range of Cassytha, and examines its impacts on the biology of host plants and the overall influence of environmental changes on Cassytha–host associations. We also comment on areas of future research directions that require to better understanding Cassytha–host interactions. It appeared that some traits, such as flowering phenology, facilitated Cassytha’s widespread distribution and successful parasitism and that Cassytha preferred woody species rather than herbaceous species as a host, and preferred species from certain families as hosts, such as Fabaceae and Myrtaceae. Cassytha often decreased biomass and impacted the physiology of host species and global environmental changes seemed to intensify the negative impacts of Cassytha on their hosts. Cassytha was not only a noxious weed, but can also function as a biocontrol agent to mitigate alien plant invasion. Copyright © 2022 Zhang, Florentine and Tennakoon
Gender Inequality in Digital Transformation: Evidence from Business Process Management Industry in Sri Lanka
This research examines whether gender inequality exists in Leadership Style, Organizational Culture, and Digital Competence of digital transformation of the Business Process Management (BPM) industry. Data were collected from 507 employees of 40 Sri Lankan BPM companies through a web-based survey. Mann-Whitney U test with descriptive statistics provided evidence to strengthen the findings. The findings confirmed that gender inequality exists in Leadership Style, Organizational Culture, and Digital Competence of digital transformation in the BPM industry in Sri Lanka. This research contributes to "Acker's Theory of Gendered Organizations" by identifying areas that reproduce gender inequality in the new digital economy workplace. This study recommends controlling if not eradicating the gender inequality through proper Human Resource (HR) policies and procedures since it may hinder organizational performance. Digital workplace will improve employee retention, satisfaction, and productivity.
Keywords: Business Process Management, Gender Inequality, Leadership Style, Organizational Culture, Digital Competenc
Electrochemical Hydrogen Peroxide Generator
Two-electron reduction of oxygen to produce hydrogen peroxide is a much researched topic. Most of the work has been done in the production of hydrogen peroxide in basic media, in order to address the needs of the pulp and paper industry. However, peroxides under alkaline conditions show poor stabilities and are not useful in disinfection applications. There is a need to design electrocatalysts that are stable and provide good current and energy efficiencies to produce hydrogen peroxide under acidic conditions. The innovation focuses on the in situ generation of hydrogen peroxide using an electrochemical cell having a gas diffusion electrode as the cathode (electrode connected to the negative pole of the power supply) and a platinized titanium anode. The cathode and anode compartments are separated by a readily available cation-exchange membrane (Nafion 117). The anode compartment is fed with deionized water. Generation of oxygen is the anode reaction. Protons from the anode compartment are transferred across the cation-exchange membrane to the cathode compartment by electrostatic attraction towards the negatively charged electrode. The cathode compartment is fed with oxygen. Here, hydrogen peroxide is generated by the reduction of oxygen. Water may also be generated in the cathode. A small amount of water is also transported across the membrane along with hydrated protons transported across the membrane. Generally, each proton is hydrated with 3-5 molecules. The process is unique because hydrogen peroxide is formed as a high-purity aqueous solution. Since there are no hazardous chemicals or liquids used in the process, the disinfection product can be applied directly to water, before entering a water filtration unit to disinfect the incoming water and to prevent the build up of heterotrophic bacteria, for example, in carbon based filters. The competitive advantages of this process are: 1. No consumable chemicals are needed in the process. The only raw materials needed are water and oxygen or air. 2. The product is pure and can therefore be used in disinfection applications directly or after proper dilution with water. 3. Oxygen generated in the anode compartment is used in the electrochemical reduction process; in addition, external oxygen is used to establish a high flow rate in the cathode compartment to remove the desired product efficiently. Exiting oxygen can be recycled after separation of liquid hydrogen peroxide product, if so desired. 4. The process can be designed for peroxide generation under microgravity conditions. 5. High concentrations of the order of 6-7 wt% can be generated by this method. This method at the time of this reporting is superior to what other researchers have reported. 6. The cell design allows for stacking of cells to increase the hydrogen peroxide production. 7. The catalyst mix containing a diquaternary ammonium compound enabled not only higher concentration of hydrogen peroxide but also higher current efficiency, improved energy efficiency, and catalyst stability. 8. The activity of the catalyst is maintained even after repeated periods of system shutdown. 9. The catalyst system can be extended for fuel-cell cathodes with suitable modifications
Electrochemical incineration of wastes
There is an increasing concern regarding the disposal of human wastes in space vehicles. It is of utmost importance to convert such wastes into harmless products which can be recycled into an Environmental Life Support System (CELSS), which incorporates the growth of plants (e.g. wheat) and algae to supplement the diet of the astronauts. Chemical treatments have proven relatively unsatisfactory and tend to be increasingly so with increase of the mission duration. Similarly, the use of heat to destroy wastes and convert them to CO2 by the use of air or oxygen has the disadvantage and difficulty of dissipating heat in a space environment and to the inevitable presence of oxides of nitrogen and carbon monoxide in the effluent gases. In particular, electrochemical techniques offer several advantages including low temperatures which may be used and the absence of any NO and CO in the evolved gases. Successful research has been carried out in the electrochemical oxidation of wastes over the last several years. The major task for 1992 was to conduct parametric studies in preparation for the building of a breadboard system, i.e., an actual practical device to consume the daily waste output of one astronaut in 24 hours, electrochemical incineration of human wastes in space vehicles. One of the main objectives was to decide on the type of three dimensional or other electrode system that would suit this purpose. The various types of electrode systems which were considered for this purpose included: rotating disc electrode, micro-electrode (an array), vibrating electrode, jet electrode, and packed bed electrode
Cathodic electrocatalyst layer for electrochemical generation of hydrogen peroxide
A cathodic gas diffusion electrode for the electrochemical production of aqueous hydrogen peroxide solutions. The cathodic gas diffusion electrode comprises an electrically conductive gas diffusion substrate and a cathodic electrocatalyst layer supported on the gas diffusion substrate. A novel cathodic electrocatalyst layer comprises a cathodic electrocatalyst, a substantially water-insoluble quaternary ammonium compound, a fluorocarbon polymer hydrophobic agent and binder, and a perfluoronated sulphonic acid polymer. An electrochemical cell using the novel cathodic electrocatalyst layer has been shown to produce an aqueous solution having between 8 and 14 weight percent hydrogen peroxide. Furthermore, such electrochemical cells have shown stable production of hydrogen peroxide solutions over 1000 hours of operation including numerous system shutdowns
Temporal Modulation of Traveling Waves in the Flow Between Rotating Cylinders With Broken Azimuthal Symmetry
The effect of temporal modulation on traveling waves in the flows in two
distinct systems of rotating cylinders, both with broken azimuthal symmetry,
has been investigated. It is shown that by modulating the control parameter at
twice the critical frequency one can excite phase-locked standing waves and
standing-wave-like states which are not allowed when the system is rotationally
symmetric. We also show how previous theoretical results can be extended to
handle patterns such as these, that are periodic in two spatial direction.Comment: 17 pages in LaTeX, 22 figures available as postscript files from
http://www.esam.nwu.edu/riecke/lit/lit.htm
BatMeth: improved mapper for bisulfite sequencing reads on DNA methylation
10.1186/gb-2012-13-10-R82Genome Biology1310-GNBL
Vortices in vibrated granular rods
We report the experimental observation of novel vortex patterns in vertically
vibrated granular rods. Above a critical packing fraction, moving ordered
domains of nearly vertical rods spontaneously form and coexist with horizontal
rods. The domains of vertical rods coarsen in time to form large vortices. We
investigate the conditions under which the vortices occur by varying the number
of rods, vibration amplitude and frequency. The size of the vortices increases
with the number of rods. We characterize the growth of the ordered domains by
measuring the area fraction of the ordered regions as a function of time. A
{\em void filling} model is presented to describe the nucleation and growth of
the vertical domains. We track the ends of the vertical rods and obtain the
velocity fields of the vortices. The rotation speed of the rods is observed to
depend on the vibration velocity of the container and on the packing. To
investigate the impact of the direction of driving on the observed phenomena,
we performed experiments with the container vibrated horizontally. Although
vertical domains form, vortices are not observed. We therefore argue that the
motion is generated due to the interaction of the inclination of the rods with
the bottom of a vertically vibrated container. We also perform simple
experiments with a single row of rods in an annulus. These experiments directly
demonstrate that the rod motion is generated when the rods are inclined from
the vertical, and is always in the direction of the inclination.Comment: 6 pages, 10 figure, 2 movies at http://physics.clarku.edu/vortex uses
revtex
- …