45 research outputs found

    Genetic determinants of rates of cognitive decline in preclinical Alzheimer’s Disease

    Get PDF
    In 2015 the number of people worldwide living with Dementia was 46.8 million, with approximately 50-75% of these cases being clinically defined as Alzheimer’s disease (AD). Despite extensive efforts, clinical trials have so far failed to yield a treatment that successfully addresses the underlying cause of AD. This lack of treatment has been suggested, in part, to be a result of late stage of intervention in current clinical trial design. For this reason, greater focus has been placed on preclinical trials and in turn both the identification of individuals at-risk for AD and, amongst these, those that are expected to decline over the course of a trial. While brain imaging to determine Aβ- amyloid burden has utility in identifying individuals with preclinical AD, further work needs to be conducted to determine what influences rates of change during these early disease stages. Of particular focus is the rate of decline in cognitive performance, as it is the primary outcome measure of efficacy in clinical trials. A number of genetic variants have been associated with cognitive performance, however additional research needs to be conducted to accurately understand the influence that genetic variation has on cognition in preclinical AD. Aims Initially the aim of this thesis was to assess the combined genetic influence of established AD risk genetic variants on preclinical cognitive performance, specifically using AD-risk effect-size weighted polygenic risk scores (PRSs) (Chapter 2). It was then aimed to evaluate the effects on cognitive rates of change in preclinical AD of genes with a priori evidence for association with cognition, both individually (Chapter 3) and then when combined (Chapter 4). The results of the preceding chapters informed the final aim which was to determine a novel method of weighting individual variants in genes associated with AD-risk and/or cognition, for use in a genetic risk score that would improve the prediction of preclinical cognitive rates of change (Chapter 5). Methods All studies presented in this thesis utilised data from the highly characterised Australian Imaging, Biomarkers and Lifestyle Study of Aging (AIBL). The AIBL study is a longitudinal cohort study collecting data at 18-monthly intervals, currently consisting of 7.5 years of follow up. Individuals investigated in this thesis had been Positron Emission Tomography (PET) imaged to determine neocortical amyloid burden. Further, all individuals were classified as Αβhigh or Αβlow based on tracer specific cut offs. In addition, a subset of these samples underwent lumbar puncture for CSF collection at the study baseline, and Aβ42, total-tau and phospho-tau were quantified. Finally, based on the AIBL neuropsychological test battery, three cognitive composites previously developed were calculated for all participants. The cognitive composites investigated were; verbal episodic memory, a statistically driven global cognition composite, and the Pre-Alzheimer’s Cognitive Composite. The AD-risk weighted PRS (Chapter 2) consisted of 22 genetic variants associated with AD classification, and was calculated by weighting individual variants based on their previously published associations with risk for AD. A statistically derived Cognitive Genetic Risk Profile (Cog-GRP), specifically driven by verbal episodic memory, was developed using a decision tree analysis (Chapter 4). Finally, a 27 genetic variant cognition weighted PRS (cwPRS), was developed and tested in a preclinical AD sample (Chapter 5). For the cwPRS, effect sizes for decline in a verbal episodic memory were determined individually for all variants in a reference sample. The resulting effect sizes were then used to calculate the cwPRS for each participant in a test sample (Chapter 5). For both the AD-risk weighted PRS (Chapter 2) and the cwPRS (Chapter 5), PRS calculations were conducted with both the inclusion and exclusion of the major genetic risk factor for, Apolipoprotein E (APOE). In all studies, linear mixed models were used to investigate associations between genetic factors, independent or in combination, and longitudinal rates of cognitive performance. Results In CN older adults the AD-risk weighted PRS, both including and excluding APOE, was positively correlated with brain and blood biomarkers, specifically; brain Aβ burden, CSF total-tau and phospho-tau (Chapter 2). When investigating cognitive performance, specifically in CN Αβhigh participants, significant associations with baseline and longitudinal cognition were only observed in the AD-risk weighted PRS with APOE (Chapter 2). When investigating gene variants previously reported to influence cognition, in CN Αβhigh participants, no independent associations were observed for any variant (Chapter 3). However, in the same sample, after interaction with APOE e4, significant associations were observed for variants in the Kidney Brain Expressed Protein (KIBRA) and Spondin-1 (SPON1) genes (Chapter 3). The combination of variants investigated in Chapter 3, with additional variants, resulted in the development of the Cog-GRP (Chapter 4). The Cog-GRP was able to delineate four groups: APOE ε4+ Risk, APOE ε4+ Resilient, APOE ε4- Risk, APOE ε4- Resilient, with the ε4+ Risk group reporting significantly faster decline in cognition than all other groups (Chapter 4). Finally, a PRS encompassing a combination of AD-risk genes (Chapter 2) and cognitive-risk genes (Chapters 3 and 4), weighted by episodic memory (cwPRS), was reported to be associated with preclinical longitudinal cognitive performance (Chapter 5). Further, these associations were observed irrespective of the presence or absence of APOE in the calculation of the cwPRS (Chapter 5). Conclusions The work presented in this thesis provides an in depth investigation of genetic influences in preclinical AD, particularly on cognitive performance. Importantly, it supports the hypothesis that there is are differences between the genetic architectures of AD-risk and AD progression. The results presented here support the use of combinatory approaches when investigating genetic influence. Finally, reported here is a novel method for PRS weighting, with the ability to predict preclinical cognitive performance in the presence and absence of APOE. Further investigation is required in cohorts with comparable data to the AIBL study, to validate the methods explored in this thesis, allowing for their eventual use in a clinical setting

    Utility of DNA methylation as a biomarker in ageing and Alzheimer’s disease

    Get PDF
    Epigenetic mechanisms such as DNA methylation have been implicated in a number of diseases including cancer, heart disease, autoimmune disorders, and neurodegenerative diseases. While it is recognized that DNA methylation is tissue-specific, a limitation for many studies is the ability to sample the tissue of interest, which is why there is a need for a proxy tissue such as blood, that is reflective of the methylation state of the target tissue. In the last decade, DNA methylation has been utilized in the design of epigenetic clocks, which aim to predict an individual’s biological age based on an algorithmically defined set of CpGs. A number of studies have found associations between disease and/or disease risk with increased biological age, adding weight to the theory of increased biological age being linked with disease processes. Hence, this review takes a closer look at the utility of DNA methylation as a biomarker in aging and disease, with a particular focus on Alzheimer’s disease

    Sleep, Sirtuin 1 and Alzheimer’s disease: A review

    Get PDF
    Sleep plays a major role in brain health, and cognition. Disrupted sleep is a well-described symptom of Alzheimer’s disease (AD). However, accumulating evidence suggests suboptimal sleep also increases AD risk. The deacetylase Sirtuin 1 (Sirt 1), encoded by the SIRT1 gene, impacts sleep via its relationship to wake-sleep neurotransmitters and somnogens. Evidence from animal and human studies supports a significant and complex relationship between sleep, Sirt 1/ SIRT1 and AD. Numerous hypotheses attempt to explain the critical impact of Sirt 1/ SIRT1 on wake- and sleep- promoting neurons, their related mechanisms and neurotransmitters. However, there is a paucity of studies assessing the interaction between sleep and Sirt 1/ SIRT1, as a principal component of sleep regulation, on AD pathology. In this review, we explore the potential association between Sirt 1/ SIRT1, sleep, and AD aetiology. Given sleep is a likely modifiable risk factor for AD, and recent studies suggest Sirt 1/ SIRT1 activation can be modulated by lifestyle or dietary approaches, further research in this area is required to explore its potential as a target for AD prevention and treatment

    Relationship of cognition and Alzheimer’s disease with gastrointestinal tract disorders: A large-scale genetic overlap and mendelian randomisation analysis

    Get PDF
    Emerging observational evidence suggests links between cognitive impairment and a range of gastrointestinal tract (GIT) disorders; however, the mechanisms underlying their relationships remain unclear. Leveraging large-scale genome-wide association studies’ summary statistics, we comprehensively assessed genetic overlap and potential causality of cognitive traits and Alzheimer’s disease (AD) with several GIT disorders. We demonstrate a strong and highly significant inverse global genetic correlation between cognitive traits and GIT disorders — peptic ulcer disease (PUD), gastritis-duodenitis, diverticulosis, irritable bowel syndrome, and gastroesophageal reflux disease (GERD), but not inflammatory bowel disease (IBD). Further analysis detects 35 significant (p \u3c 4.37 × 10 − 5) bivariate local genetic correlations between cognitive traits, AD, and GIT disorders (including IBD). Mendelian randomisation analysis suggests a risk-decreasing causality of educational attainment, intelligence, and other cognitive traits on PUD and GERD, but not IBD, and a putative association of GERD with cognitive function decline. Gene-based analysis reveals a significant gene-level genetic overlap of cognitive traits with AD and GIT disorders (IBD inclusive, pbinomial-test = 1.18 × 10 − 3 – 2.20 × 10 − 16). Our study supports the protective roles of genetically-influenced educational attainments and other cognitive traits on the risk of GIT disorders and highlights a putative association of GERD with cognitive function decline. Findings from local genetic correlation analysis provide novel insights, indicating that the relationship of IBD with cognitive traits (and AD) will depend largely on their local effects across the genome

    Hair and salivary cortisol and their relationship with lifestyle, mood and cognitive outcomes in premanifest Huntington’s disease

    Get PDF
    Salivary cortisol dysrhythmias have been reported in some, but not all studies assessing hypothalamic–pituitary–adrenal (HPA) axis function in Huntington’s disease (HD). These differences are presumed to be due to environmental influences on temporal salivary cortisol measurement. Further exploration of HPA-axis function using a more stable and longer-term measure, such as hair cortisol, is needed to confirm earlier findings. This study aimed to evaluate hair and salivary cortisol concentrations and their associations with clinical and lifestyle outcomes in individuals with premanifest HD (n = 26) compared to healthy controls (n = 14). Participants provided saliva and hair samples and data were collected on clinical disease outcomes, mood, cognition, physical activity, cognitive reserve, sleep quality and social network size to investigate relationships between clinical and lifestyle outcomes and cortisol concentrations. Hair and salivary cortisol concentrations did not significantly differ between the premanifest HD and control groups. No significant associations were observed between hair or salivary cortisol concentrations and cognitive, mood or lifestyle outcomes. However, hair cortisol concentrations were significantly associated with disease outcomes in individuals with premanifest HD. Significant associations between hair cortisol concentrations and measures of disease burden and onset may suggest a potential disease marker and should be explored longitudinally in a larger sample of individuals with HD

    A large-scale genome-wide cross-trait analysis reveals shared genetic architecture between Alzheimer’s disease and gastrointestinal tract disorders

    Get PDF
    Consistent with the concept of the gut-brain phenomenon, observational studies suggest a relationship between Alzheimer’s disease (AD) and gastrointestinal tract (GIT) disorders; however, their underlying mechanisms remain unclear. Here, we analyse several genome-wide association studies (GWAS) summary statistics (N = 34,652–456,327), to assess the relationship of AD with GIT disorders. Findings reveal a positive significant genetic overlap and correlation between AD and gastroesophageal reflux disease (GERD), peptic ulcer disease (PUD), gastritis-duodenitis, irritable bowel syndrome and diverticulosis, but not inflammatory bowel disease. Cross-trait meta-analysis identifies several loci (Pmeta-analysis \u3c 5 × 10−8) shared by AD and GIT disorders (GERD and PUD) including PDE4B, BRINP3, ATG16L1, SEMA3F, HLA-DRA, SCARA3, MTSS2, PHB, and TOMM40. Colocalization and gene-based analyses reinforce these loci. Pathway-based analyses demonstrate significant enrichment of lipid metabolism, autoimmunity, lipase inhibitors, PD-1 signalling, and statin mechanisms, among others, for AD and GIT traits. Our findings provide genetic insights into the gut-brain relationship, implicating shared but non-causal genetic susceptibility of GIT disorders with AD’s risk. Genes and biological pathways identified are potential targets for further investigation in AD, GIT disorders, and their comorbidity

    Current insights on the use of insulin and the potential use of insulin mimetics in targeting insulin signalling in Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) and type 2 diabetes (T2D) are chronic diseases that share several pathological mechanisms, including insulin resistance and impaired insulin signalling. Their shared features have prompted the evaluation of the drugs used to manage diabetes for the treatment of AD. Insulin delivery itself has been utilized, with promising effects, in improving cognition and reducing AD related neuropathology. The most recent clinical trial involving intranasal insulin reported no slowing of cognitive decline; however, several factors may have impacted the trial outcomes. Long-acting and rapid-acting insulin analogues have also been evaluated within the context of AD with a lack of consistent outcomes. This narrative review provided insight into how targeting insulin signalling in the brain has potential as a therapeutic target for AD and provided a detailed update on the efficacy of insulin, its analogues and the outcomes of human clinical trials. We also discussed the current evidence that warrants the further investigation of the use of the mimetics of insulin for AD. These small molecules may provide a modifiable alternative to insulin, aiding in developing drugs that selectively target insulin signalling in the brain with the aim to attenuate cognitive dysfunction and AD pathologies

    A potential role for sirtuin-1 in Alzheimer\u27s disease: Reviewing the biological and environmental evidence

    Get PDF
    Sirtuin-1 (Sirt1), encoded by the SIRT1 gene, is a conserved Nicotinamide adenine dinucleotide (NAD+) dependent deacetylase enzyme, considered as the master regulator of metabolism in humans. Sirt1 contributes to a wide range of biological pathways via several mechanisms influenced by lifestyle, such as diet and exercise. The importance of a healthy lifestyle is of relevance to highly prevalent modern chronic diseases, such as Alzheimer\u27s disease (AD). There is growing evidence at multiple levels for a role of Sirt1/SIRT1 in AD pathological mechanisms. As such, this review will explore the relevance of Sirt1 to AD pathological mechanisms, by describing the involvement of Sirt1/SIRT1 in the development of AD pathological hallmarks, through its impact on the metabolism of amyloid- and degradation of phosphorylated tau. We then explore the involvement of Sirt1/SIRT1 across different AD-relevant biological processes, including cholesterol metabolism, inflammation, circadian rhythm, and gut microbiome, before discussing the interplay between Sirt1 and AD-related lifestyle factors, such as diet, physical activity, and smoking, as well as depression, a common comorbidity. Genome-wide association studies have explored potential associations between SIRT1 and AD, as well as AD risk factors and co-morbidities. We summarize this evidence at the genetic level to highlight links between SIRT1 and AD, particularly associations with AD-related risk factors, such as heart disease. Finally, we review the current literature of potential interactions between SIRT1 genetic variants and lifestyle factors and how this evidence supports the need for further research to determine the relevance of these interactions with respect to AD and dementia

    Exploring discordant low amyloid beta and high neocortical tau positron emission tomography cases

    Get PDF
    Introduction: Neocortical 3R4R (3-repeat/4-repeat) tau aggregates are rarely observed in the absence of amyloid beta (Aβ). 18F-MK6240 binds specifically to the 3R4R form of tau that is characteristic of Alzheimer\u27s disease (AD). We report four cases with negative Aβ, but positive tau positron emission tomography (PET) findings. Methods: All Australian Imaging, Biomarkers and Lifestyle study of aging (AIBL) study participants with Aβ (18F-NAV4694) and tau (18F-MK6240) PET scans were included. Centiloid \u3c 25 defined negative Aβ PET (Aβ–). The presence of neocortical tau was defined quantitatively and visually. Results: Aβ– PET was observed in 276 participants. Four of these participants (one cognitively unimpaired [CU], two mild cognitive impairment [MCI], one AD) had tau tracer retention in a pattern consistent with Braak tau stages V to VI. Fluid biomarkers supported a diagnosis of AD. In silico analysis of APP, PSEN1, PSEN2, and MAPT genes did not identify relevant functional mutations. Discussion: Discordant cases were infrequent (1.4% of all Aβ– participants). In these cases, the Aβ PET ligand may not be detecting the Aβ that is present

    Discovery of a missense mutation (Q222K) of the APOE gene from the Australian imaging, biomarker and lifestyle study

    Get PDF
    After age, polymorphisms of the Apolipoprotein E (APOE) gene are the biggest risk factor for the development of Alzheimer\u27s disease (AD). During our investigation to discovery biomarkers in plasma, using 2D gel electrophoresis, we found an individual with and unusual apoE isoelectric point compared to APOE ϵ2, ϵ3, and ϵ4 carriers. Whole exome sequencing of APOE from the donor confirmed a single nucleotide polymorphism (SNP) in exon 4, translating to a rare Q222K missense mutation. The apoE ϵ4 (Q222K) mutation did not form dimers or complexes observed for apoE ϵ2 ϵ3 proteins
    corecore