106 research outputs found

    Decomposing Overcomplete 3rd Order Tensors using Sum-of-Squares Algorithms

    Get PDF
    Tensor rank and low-rank tensor decompositions have many applications in learning and complexity theory. Most known algorithms use unfoldings of tensors and can only handle rank up to n⌊p/2⌋n^{\lfloor p/2 \rfloor} for a pp-th order tensor in Rnp\mathbb{R}^{n^p}. Previously no efficient algorithm can decompose 3rd order tensors when the rank is super-linear in the dimension. Using ideas from sum-of-squares hierarchy, we give the first quasi-polynomial time algorithm that can decompose a random 3rd order tensor decomposition when the rank is as large as n3/2/polylognn^{3/2}/\textrm{polylog} n. We also give a polynomial time algorithm for certifying the injective norm of random low rank tensors. Our tensor decomposition algorithm exploits the relationship between injective norm and the tensor components. The proof relies on interesting tools for decoupling random variables to prove better matrix concentration bounds, which can be useful in other settings

    Why Do Local Methods Solve Nonconvex Problems?

    Full text link
    Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue -- optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.Comment: This is the Chapter 21 of the book "Beyond the Worst-Case Analysis of Algorithms

    Polynomial-time Tensor Decompositions with Sum-of-Squares

    Full text link
    We give new algorithms based on the sum-of-squares method for tensor decomposition. Our results improve the best known running times from quasi-polynomial to polynomial for several problems, including decomposing random overcomplete 3-tensors and learning overcomplete dictionaries with constant relative sparsity. We also give the first robust analysis for decomposing overcomplete 4-tensors in the smoothed analysis model. A key ingredient of our analysis is to establish small spectral gaps in moment matrices derived from solutions to sum-of-squares relaxations. To enable this analysis we augment sum-of-squares relaxations with spectral analogs of maximum entropy constraints.Comment: to appear in FOCS 201
    • …
    corecore