13 research outputs found

    Characteristics of rhizosphere and bulk soil microbial community of Chinese cabbage (Brassica campestris) grown in Karst area

    Get PDF
    Understanding the rhizosphere soil microbial community and its relationship with the bulk soil microbial community is critical for maintaining soil health and fertility and improving crop yields in Karst regions. The microbial communities in the rhizosphere and bulk soils of a Chinese cabbage (Brassica campestris) plantation in a Karst region, as well as their relationships with soil nutrients, were examined in this study using high-throughput sequencing technologies of 16S and ITS amplicons. The aim was to provide theoretical insights into the healthy cultivation of Chinese cabbage in a Karst area. The findings revealed that the rhizosphere soil showed higher contents of organic matter (OM), alkaline hydrolyzable nitrogen (AN), available phosphorus (AP), total phosphorus (TP), available potassium (AK), total potassium (TK), total nitrogen (TN), catalase (CA), urease (UR), sucrase (SU), and phosphatase (PHO), in comparison with bulk soil, while the pH value showed the opposite trend. The diversity of bacterial and fungal communities in the bulk soil was higher than that in the rhizosphere soil, and their compositions differed between the two types of soil. In the rhizosphere soil, Proteobacteria, Acidobacteriota, Actinobacteriota, and Bacteroidota were the dominant bacterial phyla, while Olpidiomycota, Ascomycota, Mortierellomycota, and Basidiomycota were the predominant fungal phyla. In contrast, the bulk soil was characterized by bacterial dominance of Proteobacteria, Acidobacteriota, Chloroflexi, and Actinobacteriota and fungal dominance of Ascomycota, Olpidiomycota, Mortierellomycota, and Basidiomycota. The fungal network was simpler than the bacterial network, and both networks exhibited less complexity in the rhizosphere soil compared with the bulk soil. Moreover, the rhizosphere soil harbored a higher proportion of beneficial Rhizobiales. The rhizosphere soil network was less complicated than the network in bulk soil by building a bacterial–fungal co-occurrence network. Furthermore, a network of relationships between soil properties and network keystone taxa revealed that the rhizosphere soil keystone taxa were more strongly correlated with soil properties than those in the bulk soil; despite its lower complexity, the rhizosphere soil contains a higher abundance of bacteria which are beneficial for cabbage growth compared with the bulk soil

    Specifically Targeted Transport of Plasma Membrane Transporters: From Potential Mechanisms for Regulating Cell Health or Disease to Applications

    No full text
    Normal substrate transport and signal transmission are the premise to ensure the health of biological somatic cells. Therefore, a comprehensive understanding of the molecular mechanism of intercellular substrate transport is of great significance for clinical treatment. In order to better understand the membrane protein through its interaction with receptors, to help maintain a healthy cell and the molecular mechanisms of disease, in this paper, we seek to clarify, first of all, the recognition mechanism for different types of membrane protein receptors; pathogen invasion using the transport pathway involved in the membrane; and the latest specific target sites of various kinds of membrane transport carriers; to provide an explanation and summary of the system. Secondly, the downstream receptor proteins and specific substrates of different membrane transporters were classified systematically; the functional differences of different subclasses and their relationship with intracellular transport disorders were analyzed to further explore the potential relationship between cell transport disorders and diseases. Finally, the paper summarizes the use of membrane transporter-specific targets for drug design and development from the latest research results; it points out the transporter-related results in disease treatment; the application prospects and the direction for drug development and disease treatment providing a new train of thought; also for disease-specific targeted therapy, it provides a certain reference value

    Plant Resistance to Fungal Pathogens: Bibliometric Analysis and Visualization

    No full text
    Plants are susceptible to fungal pathogen infection, threatening plant growth and development. Researchers worldwide have conducted extensive studies to address this issue and have published numerous articles on the subject, but they lack a scientometric evaluation. This study analyzed international research on the topic “Plant resistance to fungal pathogens” between 2008 and 2021, using the core database of the Web of Science (WoS). By searching the subject words “Plants”, “Disease Resistance”, and “Fungal Pathogens”, we received 6687 articles. Bibliometric visualization software analyzes the most published countries, institutions, journals, authors, the most cited articles, and the most common keywords. The results show that the number of articles in the database has increased year by year, with the United States and China occupying the core positions, accounting for 46.16% of the total published articles worldwide. The United States Department of Agriculture (USDA) is the main publishing organization. Wang Guoliang is the author with the most published articles, and the Frontiers in Plant Science ranks first in published articles. The research on plant anti-fungal pathogens is booming, and international exchanges and cooperation need to be further strengthened. This paper summarizes five possible research ideas, from fungal pathogens, gene editing technology, extraction of secondary metabolites from plants as anti-fungal agents, identification of related signal pathways, fungal molecular databases, and development of nanomaterials, to provide data for related research

    The Mechanism of Metal Homeostasis in Plants: A New View on the Synergistic Regulation Pathway of Membrane Proteins, Lipids and Metal Ions

    No full text
    Heavy metal stress (HMS) is one of the most destructive abiotic stresses which seriously affects the growth and development of plants. Recent studies have shown significant progress in understanding the molecular mechanisms underlying plant tolerance to HMS. In general, three core signals are involved in plants’ responses to HMS; these are mitogen-activated protein kinase (MAPK), calcium, and hormonal (abscisic acid) signals. In addition to these signal components, other regulatory factors, such as microRNAs and membrane proteins, also play an important role in regulating HMS responses in plants. Membrane proteins interact with the highly complex and heterogeneous lipids in the plant cell environment. The function of membrane proteins is affected by the interactions between lipids and lipid-membrane proteins. Our review findings also indicate the possibility of membrane protein-lipid-metal ion interactions in regulating metal homeostasis in plant cells. In this review, we investigated the role of membrane proteins with specific substrate recognition in regulating cell metal homeostasis. The understanding of the possible interaction networks and upstream and downstream pathways is developed. In addition, possible interactions between membrane proteins, metal ions, and lipids are discussed to provide new ideas for studying metal homeostasis in plant cells

    Signaling and Detoxification Strategies in Plant-Microbes Symbiosis under Heavy Metal Stress: A Mechanistic Understanding

    No full text
    Plants typically interact with a variety of microorganisms, including bacteria, mycorrhizal fungi, and other organisms, in their above- and below-ground parts. In the biosphere, the interactions of plants with diverse microbes enable them to acquire a wide range of symbiotic advantages, resulting in enhanced plant growth and development and stress tolerance to toxic metals (TMs). Recent studies have shown that certain microorganisms can reduce the accumulation of TMs in plants through various mechanisms and can reduce the bioavailability of TMs in soil. However, relevant progress is lacking in summarization. This review mechanistically summarizes the common mediating pathways, detoxification strategies, and homeostatic mechanisms based on the research progress of the joint prevention and control of TMs by arbuscular mycorrhizal fungi (AMF)-plant and Rhizobium-plant interactions. Given the importance of tripartite mutualism in the plant-microbe system, it is necessary to further explore key signaling molecules to understand the role of plant-microbe mutualism in improving plant tolerance under heavy metal stress in the contaminated soil environments. It is hoped that our findings will be useful in studying plant stress tolerance under a broad range of environmental conditions and will help in developing new technologies for ensuring crop health and performance in future

    Metalloprotein-Specific or Critical Amino Acid Residues: Perspectives on Plant-Precise Detoxification and Recognition Mechanisms under Cadmium Stress

    No full text
    Cadmium (Cd) pollution in cultivated land is caused by irresistible geological factors and human activities; intense diffusion and migration have seriously affected the safety of food crops. Plants have evolved mechanisms to control excessive influx of Cd in the environment, such as directional transport, chelation and detoxification. This is done by some specific metalloproteins, whose key amino acid motifs have been investigated by scientists one by one. The application of powerful cell biology, crystal structure science, and molecular probe targeted labeling technology has identified a series of protein families involved in the influx, transport and detoxification of the heavy metal Cd. This review summarizes them as influx proteins (NRAMP, ZIP), chelating proteins (MT, PDF), vacuolar proteins (CAX, ABCC, MTP), long-distance transport proteins (OPT, HMA) and efflux proteins (PCR, ABCG). We selected representative proteins from each family, and compared their amino acid sequence, motif structure, subcellular location, tissue specific distribution and other characteristics of differences and common points, so as to summarize the key residues of the Cd binding target. Then, we explain its special mechanism of action from the molecular structure. In conclusion, this review is expected to provide a reference for the exploration of key amino acid targets of Cd, and lay a foundation for the intelligent design and breeding of crops with high/low Cd accumulation

    Unraveling the Mechanism of StWRKY6 in Potato (<i>Solanum tuberosum</i>)’s Cadmium Tolerance for Ensuring Food Safety

    No full text
    The WRKY transcription factor plays a crucial role in plant stress adaptation. Our research has found that WRKY6 in Solanum tuberosum (potatoes) is closely related to cadmium (Cd) tolerance. Therefore, investigating the mechanism of StWRKY6 in plant resistance to Cd toxicity is of great scientific importance for food safety. This research further analyzed the gene structure and functional regions of the nuclear transcription factor WRKY6 in potatoes, discovering that StWRKY6 contains W box, GB/box, ABRE, and other elements that can act as a nuclear transcription regulatory factor to execute multiple functional regulations. The results of the heterologous expression of StWRKY6 in Arabidopsis under Cd stress showed that the overexpression line (StWRKY6-OE) had significantly higher SAPD values and content of reactive oxygen species scavenging enzymes than the wild type, indicating that StWRKY6 plays a crucial role in protecting the photosynthetic system and promoting carbohydrate synthesis. Transcriptome analysis also revealed that the Cd-induced expression of StWRKY6 up-regulated many potential gene targets, including APR2, DFRA, ABCG1, VSP2, ERF013, SAUR64/67, and BBX20, which are involved in Cd chelation (APR2, DFRA), plant defense (VSP2, PDF1.4), toxic substance efflux (ABCG1), light morphology development (BBX20), and auxin signal (SAUR64/67). These genes coordinate the regulation of Cd tolerance in the StWRKY6 overexpression line. In summary, this study identified a potential gene set of the co-expression module of StWRKY6, providing useful evidence for the remediation of Cd-contaminated soil and the genetic breeding of low Cd-accumulating crops, thereby ensuring food safety

    Extent to which pH and topographic factors control soil organic carbon level in dry farming cropland soils of the mountainous region of Southwest China

    No full text
    Soil organic carbon (SOC) in agricultural land is influenced greatly by indeterminate human activity, making it difficult to understand the spatial pattern of SOC. Soil pH and topographic conditions are key indices in the Chinese Soil Genetic Classification System (CSGCS) and manage some critical factors that control the dynamics of SOC either directly or indirectly. To identify the extent to which pH and topographic factors control SOC levels in dry farming cropland soils of the mountainous region of Southwest China, we compared the differences along topographic gradients, and analysed the contribution of different factors in determining SOC status using analysis of variance (ANOVA) and linear regression: Our results indicated the SOC levels ranged from 10.46 g.kg(-1) to 37.60 g.kg(-1) and were significantly correlated with soil pH, landscape position, slope and elevation (p &lt; 0.05). On a large scale, the combined effects of landscape position and elevation contributed to fluctuating SOC levels along the elevation gradient. SOC levels slightly, but significantly, decreased from base to summit. The difference of SOC levels along a 200 m elevation gradient exhibited statistical significance (p &lt; 0.05). A slope range, from 0 to 42, was categorized into three groups, namely, 5 to 15, 15 to 30 and others. The slope range 15 to 30 had significantly greater SOC values than the other groups. These variables could all together explain approximately 40% of total variation in SOC, of which approximately 70% was attributable to soil pH, suggesting soil pH plays a key role in forming the spatial pattern of SOC levels in dry farming cropland soils of the mountainous region of Southwest China. The combined effect of landscape position and elevation could further explain 7.3% of SOC variation, which is more apparent than the effect of elevation alone

    Different composites inhibit Cd accumulation in grains under the rice-oilseed rape rotation mode of karst area: A field study

    No full text
    Ensuring the safe production of food and oil crops in soils with elevated cadmium (Cd) content in karst regions is crucial. We tested a field experiment to examine the long-term remediation effects of compound microorganisms (CM), strong anion exchange adsorbent (SAX), processed oyster shell (POS), and composite humic acids (CHA) on Cd contamination in paddy fields under a rice-oilseed rape rotation system. In comparison to the control group (CK), the application of amendments significantly increased soil pH, cation exchange capacity (CEC), and soil organic matter (SOM) content while markedly decreasing the content of available Cd (ACd). During the rice cultivation season, Cd was predominantly concentrated in the roots. Relative to the control (CK), the Cd content in each organ was significantly reduced. The Cd content in brown rice decreased by 19.18–85.45%. The Cd content in brown rice following different treatments exhibited the order of CM > POS > CHA > SAX, which was lower than the Chinese Food Safety Standard (GB 2762–2017) (0.20 mg/kg). Intriguingly, during the oilseed rape cultivation season, we discovered that oilseed rape possesses potential phytoremediation capabilities, with Cd mainly accumulating in roots and stems. Notably, CHA treatment alone significantly decreased the Cd content in oilseed rape grains to 0.156 mg/kg. CHA treatment also maintained soil pH and SOM content, consistently reduced soil ACd content, and stabilized Cd content in RSF within the rice-oilseed rape rotation system. Importantly, CHA treatment not only enhances crop production but also has a low total cost (1255.230 US$/hm2). Our research demonstrated that CHA provides a consistent and stable remediation effect on Cd-contaminated rice fields within the crop rotation system, as evidenced by the analysis of Cd reduction efficiency, crop yield, soil environmental change, and total cost. These findings offer valuable guidance for sustainable soil utilization and safe production of grain and oil crops in the context of high Cd concentrations in karst mountainous regions

    Data_Sheet_1_Characteristics of rhizosphere and bulk soil microbial community of Chinese cabbage (Brassica campestris) grown in Karst area.doc

    No full text
    Understanding the rhizosphere soil microbial community and its relationship with the bulk soil microbial community is critical for maintaining soil health and fertility and improving crop yields in Karst regions. The microbial communities in the rhizosphere and bulk soils of a Chinese cabbage (Brassica campestris) plantation in a Karst region, as well as their relationships with soil nutrients, were examined in this study using high-throughput sequencing technologies of 16S and ITS amplicons. The aim was to provide theoretical insights into the healthy cultivation of Chinese cabbage in a Karst area. The findings revealed that the rhizosphere soil showed higher contents of organic matter (OM), alkaline hydrolyzable nitrogen (AN), available phosphorus (AP), total phosphorus (TP), available potassium (AK), total potassium (TK), total nitrogen (TN), catalase (CA), urease (UR), sucrase (SU), and phosphatase (PHO), in comparison with bulk soil, while the pH value showed the opposite trend. The diversity of bacterial and fungal communities in the bulk soil was higher than that in the rhizosphere soil, and their compositions differed between the two types of soil. In the rhizosphere soil, Proteobacteria, Acidobacteriota, Actinobacteriota, and Bacteroidota were the dominant bacterial phyla, while Olpidiomycota, Ascomycota, Mortierellomycota, and Basidiomycota were the predominant fungal phyla. In contrast, the bulk soil was characterized by bacterial dominance of Proteobacteria, Acidobacteriota, Chloroflexi, and Actinobacteriota and fungal dominance of Ascomycota, Olpidiomycota, Mortierellomycota, and Basidiomycota. The fungal network was simpler than the bacterial network, and both networks exhibited less complexity in the rhizosphere soil compared with the bulk soil. Moreover, the rhizosphere soil harbored a higher proportion of beneficial Rhizobiales. The rhizosphere soil network was less complicated than the network in bulk soil by building a bacterial–fungal co-occurrence network. Furthermore, a network of relationships between soil properties and network keystone taxa revealed that the rhizosphere soil keystone taxa were more strongly correlated with soil properties than those in the bulk soil; despite its lower complexity, the rhizosphere soil contains a higher abundance of bacteria which are beneficial for cabbage growth compared with the bulk soil.</p
    corecore