4 research outputs found

    Vehicle Safety Planning Control Method Based on Variable Gauss Safety Field

    No full text
    The existing intelligent vehicle trajectory-planning methods have limitations in terms of efficiency and safety. To overcome these limitations, this paper proposes an automatic driving trajectory-planning method based on a variable Gaussian safety field. Firstly, the time series bird’s-eye view is used as the input state quantity of the network, which improves the effectiveness of the trajectory planning policy network in extracting the features of the surrounding traffic environment. Then, the policy gradient algorithm is used to generate the planned trajectory of the autonomous vehicle, which improves the planning efficiency. The variable Gaussian safety field is used as the reward function of the trajectory planning part and the evaluation index of the control part, which improves the safety of the reinforcement learning vehicle tracking algorithm. The proposed algorithm is verified using the simulator. The obtained results show that the proposed algorithm has excellent trajectory planning ability in the highway scene and can achieve high safety and high precision tracking control

    MGA-seq: robust identification of extrachromosomal DNA and genetic variants using multiple genetic abnormality sequencing

    No full text
    Abstract Genomic abnormalities are strongly associated with cancer and infertility. In this study, we develop a simple and efficient method — multiple genetic abnormality sequencing (MGA-Seq) — to simultaneously detect structural variation, copy number variation, single-nucleotide polymorphism, homogeneously staining regions, and extrachromosomal DNA (ecDNA) from a single tube. MGA-Seq directly sequences proximity-ligated genomic fragments, yielding a dataset with concurrent genome three-dimensional and whole-genome sequencing information, enabling approximate localization of genomic structural variations and facilitating breakpoint identification. Additionally, by utilizing MGA-Seq, we map focal amplification and oncogene coamplification, thus facilitating the exploration of ecDNA’s transcriptional regulatory function
    corecore