67 research outputs found

    Pseudo‑nitzschia fukuyoi (Bacillariophyceae), a domoic acid‑producing species from Nha Phu Bay, Khanh Hoa Province, Vietnam

    Get PDF
    Two strains of Pseudo-nitzschia fukuyoi isolated from Vietnamese waters produce domoic acid, a toxin responsible for amnesic shellfish poisoning. Species identification was based on detailed morphological observation using a transmission electron microscope and also molecular data on large subunit (LSU) and the second internal transcribed spacer (ITS2) with NCBI nucleotide Blast (blastn). Toxin productivity of the two strains was confirmed and their range were 3.85–4.54 pg/cell by analyses using LC–MS/MS. This is the first report of occurrence of P. fukuyoi in Vietnamese waters, and the first confirmation of productivity of domoic acid of the species

    Pseudo‑nitzschia species (Bacillariophyceae) identification and delineation using mitochondrial cox1 gene sequences as compared to LSU rDNA

    Get PDF
    An attempt was made to infer the phylogeny of Pseudo-nitzschia species by using the mitochondrialencoded gene, cytochrome c oxidase subunit I (cox1), and comparing it with the nuclear-encoded large subunit ribosomal DNA (LSU rDNA). A pair of primers targeting Pseudo-nitzschia cox1 was designed in silico and used to infer the molecular phylogeny of Pseudo-nitzschia. The primer pair was tested using genomic DNAs isolated from six species of Pseudo-nitzschia from Malaysia. The phylogenetic inference of cox1 was then compared to the LSU rDNA phylogeny. Phylogenetic reconstructions of both data sets revealed monophyly of Pseudo-nitzschia species complexes. The range of genetic divergences among Pseudo-nitzschia species were higher in the cox1 data set (3.5–20.4 %) compared to the LSU rDNA data set (0.1– 8.8 %). The present study suggests that high genetic divergence in cox1 of Pseudo-nitzschia species could be a useful genetic marker for DNA bar coding

    An evaluation of the genus Amphidinium (Dinophyceae) combining evidence from morphology, phylogenetics, and toxin production, with the introduction of six novel species

    Get PDF
    The genus Amphidinium is an important group of athecated dinoflagellates because of its high abundance in marine habitats, its member’s ability to live in a variety of environmental conditions and ability to produce toxins. Furthermore, the genus is of particular interest in the biotechnology field for its potential in the pharmaceutical arena. Taxonomically the there is a history of complication and confusion over the proper identities and placements of Amphidinium species due to high genetic variability coupled with high morphological conservation. Thirteen years has passed since the most recent review of the group, and while many issues were resolved, some remain. The present study used microscopy, phylogenetics of the 28S region of rDNA, secondary structure of the ITS2 region of rDNA, compensatory base change data, and cytotoxicity data from Amphidinium strains collected world-wide to elucidate remaining confusion. This holistic approach using multiple lines of evidence resulted in a more comprehensive understanding of the morphological, ecological, and genetic characteristics that are attributed to organisms belonging to Amphidinium, including six novel species: A. fijiensis, A. magnum, A. paucianulatum, A. pseudomassartii, A. theodori, and A. tomasii

    The genus Pseudo-nitzschia (Bacillariophyceae) in Malaysia, including new records and a key to species inferred from morphology-based phylogeny

    Get PDF
    Species of the diatom Pseudo-nitzschia are known to produce domoic acid that is responsible for amnesic shellfish poisoning (ASP). To investigate the potential risk of ASP and species occurrence of toxic or potentially toxic Pseudo-nitzschia in Malaysian waters, plankton samples were collected from 17 locations. Samples were examined through transmission electron microscopy. Species of Pseudo-nitzschia were identified on the basis of the frustule morphology and morphometric measurements. Twentytwo well-described species were recorded, of which 14 are new records for Malaysia. A new morphotype, closely resembling species in the pseudodelicatissima complex, was also discovered. The morphotype differs from other species in the complex by its lower densities of fibulae and striae. Nine of the species have previously been associated with ASP events worldwide. Our study recorded for the first time high species richness of Pseudo-nitzschia in the confined coasts of Malaysia. In addition, we performed a morphology-based phylogeny and proposed a key to Pseudo-nitzschia species, with a special emphasis on the poroid structure of the striae, to aid in species identification

    Genetic structure of Pseudo-nitzschia pungens (Bacillariophyceae) populations: Implications of a global diversification of the diatom

    Get PDF
    Pseudo-nitzschia pungens is a planktonic marine diatom known to be widespread in tropical and temperate coastal waters. We examined the population genetic structure of tropical Southeast Asian populations of P. pungens and compared it with those of northern and southern temperate populations. The secondary structures of the nuclear encoded internal transcribed spacer (ITS) region of 164 strains of P. pungens were modeled and analyzed. The tree revealed three ITS entities: clade I (comprised of P. pungens var. pungens) was distributed mainly in northern temperate waters; clade II (comprised of both P. pungens var. pungens and var. cingulata) was mainly from the NE Pacific; and clade III (comprised of both P. pungens var. pungens and var. aveirensis) was restricted to tropical and warm-temperate waters. Hybrids of both P. pungens var. pungens and var. cingulata co-occurred in clades I and II. Sixty haplotypes were revealed from the sequences of 164 strains. Haplotype diversity inferred from the median-joining network was in accordance with phylogenetic analysis, further supporting the grouping of the P. pungens haplogroups. Our results revealed limited gene flow between P. pungens from tropical and temperate waters, and significant population structure, as estimated by an analysis of molecular variance (AMOVA), with 75% of the total ITS variation found among populations (KST = 0.75). This study suggests that distinct environmental clines, such as ocean thermohaline circulation, have a potential for fragmenting and dispersing global populations of P. pungens. Formation of the Isthmus of Panama, in particular, is speculated to play a role in this allopatric differentiation in P. pungens populations worldwide

    Semicryptic Diversity around Chaetoceros elegans (Bacillariophyta, Mediophyceae), and the Description of Two New Species

    Get PDF
    The globally distributed Chaetoceros elegans belongs to the Chaetoceros lorenzianus (C. lorenzianus) complex and is characterized by having tear-shaped setae poroids. Several strains of C. elegans were established from Chinese coastal waters. The vegetative cells and the resting spores were observed using light and electron microscopy. Phylogenetic analyses of two nuclear ribosomal RNA genes (SSU and the D1–D3 region of LSU) and the internal transcribed spacer (ITS) revealed that the C. elegans strains clustered into three clades, corresponding to different morphotypes. Based on the type material, the delineation of C. elegans was amended, and two new taxa, (Chaetoceros macroelegans) C. macroelegans sp. nov. and (Chaetoceros densoelegans) C.densoelegans sp. nov., were described. The two new taxa are featured by the presence of two types of setae poroids, tear-shaped and round-oval setae poroids, whereas only tear-shaped setae poroids are seen in C. elegans. The setae base is distinct in C. elegans, but absent or short in the two new taxa. In C. macroelegans, the tear-shaped poroids on the intercalary setae are larger and less densely spaced than in the other two species. The round-oval setae poroids are more densely spaced in C.densoelegans than in C. macroelegans, although they have more or less the same size. Resting spores characterize the two new taxa, but are unknown in the amended C. elegans. When comparing the ITS2 secondary structure, two and four compensatory base changes (CBCs) distinguish C. elegans from C. macroelegans and C.densoelegans, respectively. Between the two new taxa, no CBC but five hemi-CBCs (HCBCs) are present. The shape, size and density of the setae poroids, as well as the morphology of the resting spores, are important characteristics for species identification among the presently nine known species within the C. lorenzianus complex. View Full-Tex

    Spatial distribution of toxic Alexandrium tamiyavanichii (Dinophyceae) in the southeastern South China Sea-Sulu Sea: A molecular-based assessment using real-time quantitative PCR (qPCR) assay

    Get PDF
    In this study, a quantitative real-time PCR (qPCR) assay targeting the second internal transcribed spacer (ITS2) of the nuclear-encoded ribosomal RNA gene (rDNA) was developed for Alexandrium tamiyavanichii, a harmful tropical marine dinoflagellate. This species is of concern because it produces toxins that cause paralytic shellfish poisoning (PSP). The qPCR assay employed hydrolysis probe technology and showed high specificity, with a detection limit of 102 gene copies (less than one cell equivalent). Using this assay, the spatial distribution of A. tamiyavanichii was assessed, for the first time, in the southeastern South China Sea and the Sulu Sea. Plankton samples were collected from 71 stations during a scientific cruise from the Research Vessel Sonne as part of the joint EU project on Stratosphere ozone: Halogens in a Varying Atmosphere (SHIVA), conducted in November 2011. The highest cell densities were detected offshore of Kuching, southern Borneo (150 cells l−1) and exceeded the threshold level of 20–40 cells l−1 where the bioaccumulation of PSP toxins by shellfish is of concern. The distribution of A. tamiyavanichii was patchy horizontally with the highest cell concentrations found mainly offshore of southern Borneo, and a heterogeneous vertical distribution was observed above the pycnocline. The A. tamiyavanichii qPCR assay proved its applicability, specificity and sensitivity, and provides an alternative implementation tool for harmful microalgae monitoring programs

    Cryptic speciation of benthic Prorocentrum (Dinophyceae) species and their potential as ecological indicators

    Get PDF
    The response of marine ecosystems to rapid climate changes has been well recognized but not studied extensively. Benthic microalgae, in contrast to the phytoplankton that is able to be transported by currents, have limited dispersal ability and thus are a better ecological indicator to climate changes. Here we performed sampling in the Yellow Sea, the East China Sea and South China Sea and established twenty-six strains of benthic Prorocentrum for detailed morphological and molecular examinations. Five Prorocentrum species, including P. concavum, P. fukuyoi, P. mexicanum, P. tsawwassenense, and P. cf. sculptile, were identified. Both P. concavum and P. fukuyoi displayed marked intraspecific divergences in large subunit (LSU) ribosomal RNA gene sequences, corresponding to their geographical origins. In contrast, P. mexicanum strains shared identical LSU sequence. Prorocentrum tsawwassenense and P. cf. sculptile are not suitable ecological indicators as they were rarely observed. Prorocentrum mexicanum is not recommended either as it is present across the region. In contrast, P. concavum and P. fukuyoi have advantages as ecological indicators for climate changes in the Western Pacific as they comprise several ribotypes with differentiated biogeography. Toxin analysis was also performed on all five species except P. fukuyoi by liquid chromatography coupled to tandem mass spectrometry, but okadaic acid was not detectable
    • …
    corecore